当大数据真的变得更好时_数据分析师
以往的经验告诉我们,充分发挥扩展优势会带来更大的分析价值。但是大数据[注]并不是一把万能的锤子,而每一个问题也不是一个靠锤子就可以解决的钉子。
许多人认为大数据意味着越大越好。人们也常常从各种哲学视角来诠释“越大越好”这一问题。对此我将这些角度归纳为:
信仰:是指容量更大、速度更快和种类更丰富的数据总会带来更多洞察力,而这正是大数据分析的核心价值。如果我们无法发现这些洞察力,那是由于我们没有充分认真地尝试,或是我们的灵活程度还不够,或者是我们没有使用正确的工具和解决方案。
偶像:是指数据的庞大容量本身就是有其价值的,与我们是否能够从中获得特殊的洞察力无关。如果我们仅凭其所支持的特定商业应用来评估它们的效用,那么在这方面,我们是与数据科学家们当前的需求是不一致的,数据科学家们的需求是将数据不加分别地存储到数据湖中,以支持今后的探索工作。
负担:是指数据的庞大容量未必是好事或坏事,但是一个无法改变的事实是,它们会对现有数据库的存储和处理能力带来极大的压力,并因此让(Hadoop等)新平台成为必需品。如果我们不能跟上这些新数据增长的步伐,那么核心的业务需求将被迫转向新型数据库。
机遇:在我看来,这是一个处理大数据的正确解决方案。随着数据规模上升至新的层次,流动的速度更快,数据的来源和格式不断增长,这一解决方案将重点放在了更为高效地获取前所未有的洞察力方面。它没将大数据作为一种信仰或偶像,因为它知道即便较小的数据规模也能够持续获得许多不同的洞察力。它也没有将数据的规模视为一种负担,而是视为一种挑战,这种挑战能够通过新的数据库平台、工具和实践加以有效应对。
2013年,我在博客中曾就大数据的核心使用案例展开过讨论,但当时只涉及到如上方程式中的“机遇”部分。晚些时候,我发现大数据中“大”这一核心价值源自于能否用增加的内容揭示出所增加的背景环境。在你分析数据以探查其完整意义时,背景环境自然是越多越好。同样的,当你尝试着在自己的问题范畴中识别出所有的变量、关系、模式以找到更好的解决方案时,内容也是越多越好。总之,越来越多的内容加上越来越多的背景环境,通常会导致数据也变得越来越多。
大数据的另一个价值在于,它们能够纠正那些小规模数据所产生的错误。曾经有观察过该问题的人说过,对于数据科学家而言,在训练集中数据偏少意味着他们更容易受到多个模型风险的影响。首先,数据规模偏小可能会导致用户忽视关键的预测性变量。同时,用户选择没有代表性的样本导致模型出现偏差的几率变大。此外,用户可能会找到一些虚假关系,如果用户拥有能够揭示实际发挥作用的基本关系的完整数据,那么他们就能够识别出这些虚假关系。
规模非常重要
所有的人都认为,一些数据类型和使用案例比能够带来新洞察力的数据更有帮助。
我近期偶然看到了一篇名为《大数据的预测模式:越大就越好吗?》文章,文章对数据的一个特定范畴——稀少的细分行为数据进行了详细阐述。在这方面,数据规模通常能够提升预测成绩。文章的作者Junqué de Fortuny、Martens和Provost称:“这类数据集的一个重要问题是它们通常都比较稀少。对于任何给定的实例,绝大多数特征都没有价值,或是价值没有表现出来。”
最值得关注的是(作者通过引述丰富的研究来支持他们的论点)(+微信关注网络世界),这类数据是许多以客户分析为重点的大数据应用的核心。社交媒体行为数据、Web浏览行为数据、移动行为数据、广告反应行为数据、自然语言行为数据都属于这类数据。
作者认为,“实际上,对于大多数预测分析型的商业应用,例如金融业和电信业的定向市场营销、信用评分、损耗管理等应用,用于预测分析的数据都非常相似。这些产品的特点都集中于个人的背景特征、地域特征和心理特征,以及诸如优先购买行为等一些通过统计总结出来的特定行为。”
“更大的行为数据集往往会更好”的关键原因非常简单,作者认为“没有大量的数据,一些显著的行为可能就无法被有效地观察到。”这是因为在零散的数据集中,行为被记录的人可能只会展示次数有限的行为。但是当你放眼整个人群时,每一种特定类型的行为你可能会观察到至少一次,或者在特定的环境中观察到多次。如果数据偏少,那么所观察的目标和观察到的行为特征也就会偏少,这将导致你会忽略许多东西。
预测模型所依靠的正是源行为数据集的丰富性。为了在未来的更多场景中预测更为精准,数据规模通常是越大越好。
当越大等同于越模糊时
尽管如此,该文的作者也提到了一些场景。在这些场景中,越大越好的假设不成立,那么我们就不得不使用特定行为特征的预测价值。这时候,权衡取舍就成为了预测行为模型的基础。
预测模式中每一个增加的行为特征,应该与所做的预测充分地联系起来,以提升模型的学习收益和预测能力,克服不断拉大的差异,即过度拟合和预测错误,因为这通常会产生更大的特征集。正如该文章作者所说的那样,“大量不相关的特征只是增加了差异和过拟合的机率,而没有相应地提升学习到更好模型的机率。”
显然当“大”妨碍到了获取预测性洞察力时,越大并非越好。用户不希望自己的大数据分析努力成为数据规模扩张的牺牲品。数据科学家也必须充分了解应该何时调整数据模型的大小,以适应手中的分析任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31