利明献详解广发银行“大数据”战略
随着互联网金融兴起的挑战,及金融与互联网竞合加剧,越来越多的传统银行通过优化业务结构、加快数据挖掘、引入互联网思维,逐步实现自身的转型升级。
近日,21世纪经济报道记者到广东调研银行业改革时,广发银行行长利明献便表示,银行业当前面临经济增速放缓、资本约束进一步强化、利差不断缩窄、互联网金融的冲击等四大难题,但没有所谓的“夕阳产业”。
他表示,“广发银行认识到数据应用在客户维护、营销推广、风险管理中的核心价值和战略意义,及早着手布局建立数据管理体系。”
中小企业金融、零售金融和金融市场、网络金融业务,并列为广发银行的四大战略业务。一般的传统观念认为,对银行而言,小微和零售是风险较大、成本更高的“不经济”业务。
利明献却表示,“风险的高低见仁见智,近年来一些大中型企业的过度信贷和杠杆过高,才是不良比较高的领域。对于一家银行来说,小微和零售也是股东回报率最高的业务。”
之所以把小微和零售作为广发的战略业务,利明献认为,小微和零售金融具有“抗周期”、“抗脱媒”和“轻资本”效应。更为重要的是,广发银行利用“大数据”提高了小微和零售业务的收益,也有效地控制住了风险。
以客户为单位的大数据
银行不缺数据,关键是对海量数据的整合和运用。
广发银行于2014年7月上线了“大数据零售商业智能决策平台”。区别在于,以往银行对客户管理按不同业务条线进行,而广发平台以客户为单位,整合了客户在广发银行的“360度”信息,包括信用卡、存款、理财、网银、个贷、小企业贷款等。
利明献称,这一体系整合了征信系统,及广发银行自建的外部信息数据库,包括专业市场数据库、22万个共覆盖4亿多人口的居民社区数据库、各商会和产业链数据库等,也跟外部如工商总局个体户等小微企业信息联网。以后相关信息还将逐步扩建,通过大数据平台时刻搜索、传导到系统内。
有别于不少银行通过自建“电商平台”获得交易数据,广发银行选择和互联网企业合作。
“近年,广发银行先后与阿里、腾讯、京东、百度、网易等互联网企业合作,借助互联网企业的地图、游戏、地位、支付等技术捕获新鲜数据,全方位开展网络金融创新。”
广发银行董事长董建岳也曾表示,广发银行要成为“中国互联网金融服务首选提供商”,首先要借助互联网“精华”,提升品牌识别度、信任度和传播度;其次打造开放、分享、低门槛的互联网金融服务平台。
利明献表示,未来一到两年内,广发银行还将采取系列措施形成具有广发银行特色的数据标准化管理机制。首先是建设企业级数据仓库平台,将分散在各个应用平台中的数据信息按客户、账户、产品、渠道等多个主题的方式进行有效的组织和存储,为后续数据分析应用打技术基础。
小微贷款风控大法
利明献介绍,目前“大数据”已应用于广发银行小企业目标客群定位、客户准入、额度核定、定价及贷后风险监测,“就像一台精密的仪器,时刻了解小企业客户的运行情况,为银行的各类差异化产品及金融服务提供决策支持。”
由于小企业财务报表规范性不高,在广发银行新一代的小企业贷款打分卡模型中,提升了非财务评价指标占比,引入纳税、结算、水电缴费、代发工资等评价指标。
水电缴费记录是广发小企业融资产品的重要准入标准,主要用于评价生产型企业经营情况;海关报关数据,主要用于进出口企业的经营情况评估;根据纳税信息,广发还开发了小额信用贷产品,根据企业纳税记录放款。
大数据的导入进一步释放了广发战略转型的潜能和效益。一方面,大数据在贷前、贷中、贷后全流程运用,有效调配了额度资源并加强了风险控制。
数据显示,2014年,广发银行将超过80%的对公信贷额度用于小微企业。2014年末,小微企业贷款余额1765.87亿元,较年初新增超过398亿元。小企业贷款不良率控制在0.8%内,不良余额和不良率“双降”。
另一方面,大数据和网络技术极大推动零售金融业务发展。2014年,广发信用卡通过微信、官网等各类网络营销渠道发卡70.5万张,同比增长超200%。此外,广发信用卡还通过借助客户消费行为洞察、网络搜索关键词分析,描画客户图像和消费热点,提供针对性的信用卡产品和服务。
“传统银行和电商银行的关系,就好比苏宁和京东,京东没有线下的实体店。”利明献通过这个比喻,道出了银行与新兴网络金融相比的优势。
广发也开始在探索线上与线下相融合的O2O服务模式,“在线上低成本获取客户,运用大数据等技术筛选优质客户,同时线下安排专业‘地面部队’精准营销。另一方面,对于线下已建立联系的存量客户,后续的服务维护也部分采用线上模式,提高服务效率,提升客户体验,使成本收益达到更优。”
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20