2015商务智能发展趋势十大预测_数据分析师
2014年匆匆而逝,但2014的故事还没有说完。在过去的一年里,我们看到了太多商务智能领域的发展,哪些会在2015年延续下去,取得新的成绩呢?美国商务智能和数据集成领域编辑David Mai做出了预测。
David Mai在美国波士顿大学获得MBA,在数据集成、数据清洗和商务智能领域有超过4年的工作经验。是资深的商务智能编辑。
商务智能发力医疗行业
2014年已经见证,并且2015年即将见证的是商务智能在承担社会责任上将发挥重要作用,尤其是在医疗行业。医院、诊所、实验室等医疗机构收集的大量数据有助于将医患之间的交流流程化、进一步强化。这样,医生和患者在传统的预防系统开始之前就能建立数据驱动的联系。收集电子医疗记录的工作已经开始,在2015年,我们将看到以下三个领域的进步:不同数据商店的兼容性更好,医疗行业的分析平台的集成会更好,消费级的客户app和严肃的医疗行业app的集成会更好。
商务智能:让生活更美好
商务智能(BI)将从业务应用和运营性能报表工具进化到个人需要的日常用品。在这几年,我们已经看到了一些初级阶段的发展,比如用商务智能技术避免交通拥堵,跟踪宠物,监测个人健康,或生活中其他助手功能,比如高尔夫GPS监测。总之,我们生活在商务智能扩展到普通人日常生活中的时代,而且已经进入我们的生活,影响我们做出的决定。
更多社交媒体和商务智能的联姻
2014年,已经有很多企业分析来自社交媒体的数据。跟踪对话和社交信息能够帮助公司理解客户对他们的看法。今年,我们看到了最大的融合,即IBM和Twitter的合作。前者是硬件和数据分析领域的大鳄,后者是主流的社交媒体网站,拥有大量数据。这注定让2104年成为不平凡的一年。我认为今年将会有更多的社交媒体公司和商务智能公司合作。
移动商务智能改变行业发展
移动商务智能对我们来说并不陌生,自智能手机和平板产生开始,移动商务智能的概念就产生了,只是到现在为止,它还没有做到像我们想的那么智能,虽然很多移动商务智能应用程序会提供仪表盘和可视化工具,但显然我们还需要更多这样的功能。今年,供应商的重点应该是让移动商务智能更先进,让它能够处理更大数据集和更多数据种类的复杂分析。
数据挖掘将成为基本的应用程序功能
数据挖掘融入到现代商务智能应用程序的方法会更智慧,它将隐藏所有复杂性,提供最大的价值。我们已经渐渐习惯厂商的数据挖掘算法,比如Netflix增加了建议功能,帮助我们做决定,比如“因为您看过XX,XX,所以我们向您推荐这部电影。“这些先进算法的使用,是分析工具的常用的一部分。另外,应用程序会找到更智能的方式来利用先进的数据挖掘算法。
我们一直在等待Hadoop成为数据仓库的工业标准。根据很多专家的预测,目前Hadoop应当已经成为标准。虽然还是有很多人相信差不多五年后这就会实现,但是还是有一些现实减缓了Hadoop征服数据仓库世界的脚步。首先,MapReduce这一Hadoop标准是存在缺陷的。适用MapReduce时,数据无法实现即时可用。第二,Hadoop需要大量人工编码,不了解Java、R语言和Hive的IT工作人员会存在学习曲线问题。Hadoop主要用户是数据库庞大的企业,这些企业拥有许多数据科学家,所以这Hadoop不像人们想象的那么普遍和主流。
企业越来越多地走向基于云的数据仓库存储
越来越多的企业会将数据存储在基于云的数据仓库中。这一现象的主要影响因素是它提供了一个多功能组合的强大集合,机构内部根本无法复制。以下是云端储存数据毫不费力就广受欢迎的部分原因。(1)优化的数据仓库和列式存储数据库(2)多种存储选择,包括从存储大量数据集的硬盘存储到性能卓越的固态硬盘存储。(3)能过即时伸缩存储容量的功能(4)内部备份和内容恢复(5)低成本。我相信2015年,走向基于云的数据仓库会是业界的趋势。很明显,IBM和惠普都同意这一观点,因为2014年它们已经在发展云端数据中心上投入了数十亿资金。
自服务商务智能兴起
2015会是自服务BI的大年。许多BI方案供应商今年都表示要增加转向自服务商务智能的特性和功能。此外,企业也都在转变市场信息,以突出强调“使用方便”或“可供业务经理使用”。这是对于用户想要越过IT部门更加迅速地直接获取数据需求的回应,这样用户就能够为企业在更短时间内带来更多价值。如果用户想要对电子数据表或仪表盘做出小改动,那么他直接就能做到,无需提交申请,省去了繁琐的手续。过去的一年是应用程序从技术部门走向业务部门的调整年,2015年更是一个全面转交年。
数据容量和数据种类持续增长
数据会越来越大。这是事实。企业不能扔掉现有数据为其他数据腾出空间。存储价格更低,历史数据也是很有价值的。由于从政府、物联网、和社交媒体等处得到数据更加便利,所以收集的数据种类也更加复杂。大部分数据都很松散,形式范围广,需要创新的方式实现存储、集成、分析和报告。
机器人等自动装置需要数据以制定更好的决策
人们可能只从最近的战争电影《拆弹部队》中了解到机器人,那里的机器人被刻画成用于拆解炸弹或者扫描危险区域的军事机器。实际上,机器人很快就会大量应用于非军事场景中。这些陆上或空中设备会越来越多地参与到从包裹递送到紧急火灾救援等活动中。自动装置依赖于一项关键问题:需要提供双向数据使人类能够了解状况,控制机器人做出反应。是否能与智能节点相连,实现数据卸载分析,接受下一步指令,会成为这些系统成功或失败的关键因素。2015年我们会见证越来越多机器人的使用,这些为商务智能的发展创造了新的需求。
数据分析咨询请扫描二维码
近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28在当今快速发展的数据驱动世界中,数据专员的角色变得愈发重要。无论是在企业决策、市场分析还是产品开发中,数据专员都扮演着不 ...
2024-10-27在当今迅速发展的科技时代,数字化对企业的意义无比深远。它不仅提升了企业的竞争力和运营效率,还显著改善了客户体验,推动了企 ...
2024-10-27企业数字化转型是一个全方位的变革过程,旨在通过应用新兴数字技术,重新设计企业的业务流程、组织结构、产品和服务,以在竞争激 ...
2024-10-27数据挖掘是一种集成了统计学、人工智能和机器学习等多种技术的过程,其主要目标是从大量数据中提取有价值的信息和知识。通过分析 ...
2024-10-27数字经济是一种新型的经济形态,以数字技术为基础,通过数据的获取、存储、加工、传输和应用进行经济发展。其核心在于利用数字化 ...
2024-10-27数据科学无疑是现代数字化社会的中流砥柱。随着大数据和人工智能技术的持续飞跃,各行各业对具备数据分析和管理能力的人才需求呈 ...
2024-10-25在当今快速发展的商业环境中,数字化转型已经成为企业保持竞争力和促进业务增长的必然选择。数字化转型不仅意味着技术的变革,更 ...
2024-10-25