迎接大数据制造业的到来_数据分析师
年底年初,中国股市一片火红色。除了利用一些政策性利好和那些半靠谱不靠谱的市场流言外,比较认真严肃的投资机构和个人投资者都想找到一些值得中长期投资的目标,得到比较可靠和比较丰盛的回报。对于找上门来切磋的,无论是机构还是个人,我都是一句话:投资大数据制造业。
大概是两年多前,也是在这个专栏上,我讨论过大数据时代启动期的三大支柱产业:网络业,新能源业和以三D打印业为代表的新型制造业,它们共同的底层推动力都是大数据的发展。时间过了两年,世界和中国最大的上市企业都变成了网络业公司,以严重依赖数据化开采技术的美国页岩气和页岩油产业的迅猛发展,将全球油价腰斩,正在引发经济和政治上的格局变化。而基于全新制造理念和技术所产生的一代新产品(例如智能手机)正在引发新一轮投资,创业和创新热潮,改变着人们熟知的传统制造业。
之所以要创造一个“大数据制造业”的新概念,一是想与近年来流传的一些大而无当,无所不包的概念分开,例如“新工业革命”;二是想扩展一些过于具象的名词,例如“3D打印”,“智能手机”,“移动互联网”等,将其中共性的东西抽象出来;三是想将制造业的新发展与大数据时代联系起来,作为一个子概念使用。简单地说,大数据制造业至少具有以下三个特征:
第一,产品都是数据终端,具有生产,存储,传输和加工数据的能力。大数据制造不是自动化,计算机化或是机器人之类的东西,那些只是生产过程的改良,没有革命意义。大数据制造的最硬标准就是产品本身是数据终端,产品的使用会产生数据,数据可以被再加工利用。万事万物皆可成为数据终端,目前最好的例子就是无人飞机,智能手机,以及各种装入各类传感器的设备。
第二,产品从设计,制造,销售,运维直到更新的整个流程都依托各类数据和数据方式完成,普遍采用新材料,新工艺,新流程,高度依赖互联网。目前,能够初步实现这一点的是少数网络业公司,甚至产品本身也是数据化的。一些传统制造业的企业家们认为,只要一些辅助环节上利用了互联网,或者在市场营销环节上主要依靠互联网,这就算是转型新生了。其实,这不过是刚刚起步而已,离彻底革命还有万里之遥。例如,无人驾驶汽车可以算作大数据制造的产品,而仅仅在汽车信息服务系统上联上互联网,只能算是传统产品的改良。
第三,产品都以产品销售和售后持续服务相结合形成新的商业模式。传统制造业的基本商业模式是产品出售,即使有些售后服务也是围绕产品销售进行,不能成为主要利润来源。而大数据制造业的产品则是以持续服务为重点,产品销售围绕持续服务进行。一个典型的例子就是苹果公司。除了尽人皆知的手机和平板电脑外,真正的明星其实是它的网络应用商店,2014年的收入超过200亿美元,增长率超过70%,毛利率超过70%,仅收入规模就超过了除谷歌外的所有网络公司。这使得投资界不知如何对苹果公司分类,既不全是IT制造,也不全是网络服务。最好的办法就是另外定义一个产业,叫做大数据制造业。
凡是符合以上三个特征的企业都可以归入大数据制造业,无论它们正在努力转型之中还是刚刚创业。当然,目前还是大数据制造业的萌芽阶段,产品还难免带有传统的痕迹,对大数据的依赖和利用程度还相当有限。但是,一些带有革命性意义的创新正在涌现。例如,大数据制造已经深入到了原子和DNA层次,利用3D打印原理重组物质结构或是对DNA进行重新排序都已经在实验室和小规模生产中出现了一些成功的案例。三五年后,一大批利用全新的材料,有机物甚至生物制造的产品很有可能问世,涌现出一批引导时代潮流和资本市场走向的新锐公司。
经过三十多年的改革奋斗,中国已经成为制造业大国,在传统的和低端的制造业领域,已经是打遍天下无敌手。利用积累的资源,经验和市场,积极探索大数据制造的发展之道,已经成为越来越多中国企业家和创业者的共识。如何寻找,判断和参与那些具有大数据制造潜质的公司,正在成为一大批投资机构和个人的历史使命。经常听到一些朋友略带遗憾地谈起,当年若是投资了某个网络公司就如何如何了。衷心希望这一次朋友们不会错过这新一波机会。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21