大数据时代轻易获取知识的利弊_大数据培训
长期以来,人们学习和掌握知识,要么是老师的言传身授,要么是阅读书籍报刊,尤其是来自经典书籍上的知识,很多人对此深信不疑。然而进入网络大数据时代之后,海量的知识顿时如潮水涌现在眼前,令人眼花缭乱。到底如何判断哪些是真知识,并且是有用的知识,现在成了一个难题。美国哈佛大学伯克曼互联网与社会中心的资深研究员戴维·温伯格新著《知识的边界》(中文版译者胡泳、高美,山西人民出版社出版),围绕大数据时代的知识等一系列问题展开了深层次的探讨和反思。
书籍报刊中的知识凝聚着专业人士的智慧,更具价值
本书中,温伯格对于大数据时代的知识进行了不同层面、不同维度的分析和梳理。他认为,印刷时代的知识是静态、单向度、线性的传播方式,而大数据时代的知识则恰恰相反。美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识是非线性的,可以自由组合、切割,处于一种游离状态。有点“召之即来,来之可取”的意味。大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。在没有建立互联网数据库之前,学者们从事学术研究,必须到图书馆查阅一本本书刊资料,既费时又费力。现如今,有了一台连接网络学术数据库的电脑,只要输入关键词,无数近似文献就会“排队”以供遴选。对于作家而言,大数据时代的文学创作,再也不必手持放大镜,一页页地翻阅字号奇小无比的工具书,而在词海的数据库中轻松检索,轻而易举就能获取相近或相反的字、词、句。
另一方面,大数据时代的各种知识,在网站、博客、微博、微信等新媒体中四处传播。而有些知识,未必就是真正的知识,可能是精神中的杂音、噪音,污染知识环境,侵蚀着人们的心灵健康。反而书籍报刊中的知识传播,经过了层层把关,凝聚着无数专业人士的智慧,更具价值。由于大数据时代的知识真假难辨,有的人感到迷惘,乃至一口认定或否定其存在的价值。事实上,作为现代人,使用网络已经成为一种重要的学习和工作手段,刻意逃避不是明智之举。笔者认为,任何一个人在大数据新媒体平台发表文章、表达观点,都应具备高度的社会责任感,理性地阐发真知灼见。倘若只是个人情绪的偏激宣泄,大数据时代的知识在未来命运如何,谁都无法预料。
不管处于什么时代,知识需要花费苦功钻研
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程省略,轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花费苦功钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不作任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行层层深入、环环相扣的论述。在很多看上去不是问题的问题追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20