大数据分析技术将用于推进文化资源管理_数据分析师培训
近年来,随着互联网、物联网、云计算、三网融合等技术的发展,大数据(Big Data)及其挖掘利用问题,成为了产业界、学术界与政府部门各方面关注的热门话题,并正在从不同方面促进着我们的生活、工作和思维方式的改变。如何加强对具有文化内涵和特征的大数据的利用,也是需要我们,特别是从提高对各类文化资源管理和利用水平的角度,进一步加以关注的问题。
什么是大数据
所谓大数据是指数据量大。但究竟怎样的量才算大,目前并没有统一的定义。一般认为,大数据的数量级至少应该达到“太字节”(Terabyte, TB)以上。因为达到了这个量级以上的数据,利用现有IT技术和软硬件工具将难以实现在可容忍的时间内,对其进行有效的感知、获取、管理、处理和利用,必须要开发新的数据管理和处理软硬件技术,才能满足应用需求。
除了数据量浩大外,大数据还有两个特点,一是模态繁多,包括结构化数据、半结构化数据和非结构化数据;二是生成快速,大数据往往以数据流的形式动态、快速地产生,具有很强的时效性,用户只有把握好对数据流的掌控才能有效利用这些数据,充分挖掘其中的价值。
从战略高度重视文化资源管理
关于文化资源及其管理的内涵,学术界有着不同的认识。按照维基百科的解释,所谓文化资源管理(Cultural Resource Management, CRM)是针对任何与文化相关的资产的管理,主要包括历史的、技术的、社会的、建筑的或科学价值的文化遗产等,也包括当代的、创新的科技与文化资产。
由此可以看出,对于一个国家和民族来讲,文化资源是其文明发展的历史过程中沉积形成的独有资产,具有唯一性和不可扩展性等特点,因此,具有不可估量的文化、经济、社会价值和意义,是代表一个国家文化软实力的核心内容和象征要素,也是各类文化艺术产品创作的基础资料和源泉。所以,我们应该从战略的高度来重视文化资源的管理和保护问题。
用大数据技术推进文化资源管理
仅从数据量大这一特点,可将大数据分为两类,一类是基于互联网、物联网而不断快速、随机产生的大量多形态的数据,可称为非结构化数据或随机大数据;另一类则是按照一定的计划和规则,有意识地采集的大量具有不同形态的数字化信息和数据,可称为结构化数据或有序大数据。从文化资源管理的角度看,这两类大数据都存在,并具有很大的利用价值。
其中一类大数据是由大量的网络搜索、下载、点击、上传等而形成的随机大数据。对这些数据进行挖掘分析的一个基本用途之一,就是对文化消费行为的分析。
通过对不同互联网用户群体的文化消费特点和偏好的分析,将有利于更全面地了解各类文化产品、文化活动的市场需求,更有针对性地开发创作相关内容、形式的文化产品,以满足各类消费者的需要,这对于提高文化产业的生产效率是具有重要意义的。
另一类大数据是有计划地采集的各类历史文化资源数字化信息。对这类数据的有效管理和充分挖掘、利用,或许是大数据及其分析技术更为重要的应用角度和需求。
随着数字化技术在文化资源管理中的应用,各类博物馆、图书馆,以及其他社会组织,都在对各类物质与非物质文化遗产开展数字化保护工作,以便更好地实现对历史文化资源的保护、保存和利用。
这些数字化文化资源信息的不断产生和完善,在客观上为我们建立了一个庞大的、具有大数据特征的数据库和资源库的同时,为我们进一步加强对中华民族的社会、文化发展历史和特点的系统研究,加深对中华文化精髓的认知,辨识“基因”,延续文脉,确定我国文化建设应加强保护、传承、传播的中华文化重点内容,制定国家文化发展战略,提供了前所未有的基础和条件,从而不但可以大大提高我们对于中华文化内涵、特点和历史的研究效率,更有可能实现与得到很多仅依靠传统的研究方法所无法得到的,甚至难以想象的效果和结果。
但由于这些数据资源分散在不同的单位、部门,又没有统一的格式标准,能否在现行体制下,采用技术手段,按照一定的共享共建机制,通过一个实际或虚拟数据交汇中心或平台的构建,整合各类数据资源,并在此基础上,进一步发挥计算机中文信息处理、模式识别、知识挖掘等大数据分析技术的优势,面向各类文化研究、文化艺术创作、文化管理等用户提供更为优质、高效的信息服务,便成为了一个值得文化与科技相关领域共同探讨和推进的任务。
为了实现以上文化资源管理目标,更好地发挥大数据分析技术的优势,促进文化发展,除应鼓励各类文化信息数据拥有部门、企业,结合需求加强对相关软、硬件及应用系统的开发外,通过实施跨部门的“中华文化资源保护与传承促进工程”等方式,在促进相关文化资源数据信息资源建设的同时,促进大数据分析相关先进信息技术的应用,加强对于中华文化的系统研究和传承利用。这对于推动文化体制改革、提升我国文化资源管理与利用水平、加强文化建设、促进文化产业发展、保障文化安全都将具有重要的意义。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21