几招教你如何在R语言中获取数据进行分析
如今,想要购买一部手机已成为一件非常具有挑战性的事,这点很好理解。因为要在如此多的款型和品牌中选择并确定符合最终需求的那款手机, 需要进行深入的产品研究并理解产品的功能。有趣的是,一些产品评论和价格比较,可供用户自由填写和选择,以帮助消费者作出正确的选择。而实际积累的数据也 为消费者对产品决策和最终决定是否购买方面也起了重要作用。作为消费者,寻找合适的数据是一个十分复杂的过程。这样一来,R语言就有了用武之地。使用R语 言进行编程,开发者可以用一个脚本快速绘制统计出适合自己的分析。下面,让我们看看R编程的一些特性和用法。
用R语言进行数据处理的不同方法:
R可以从以下几个方面读取数据:
·电子数据表
·Excel表
·数据库
·图片
·文本文件
·其他特殊格式
导入数据
不论是本地数据还是网上数据,使用R编程都将能够成功地导入不同格式的数据。
从文件中读取数据
理想情况下,数据是可以储存在文件系统中的。这些数据必须可读或写,用以识别当前目录中储存的文件。
·目录设置
首当其冲的就是设置工作目录。
使用命令getwd()来确定目录(文件夹)
在linux pc输出显示的路径如下:
> getwd()
[1] “/home/test”
在Windows上描述为:
c:\data\test
设置数据文件的保存目录,使用命令setwd(“路径”),路径数据文件所在的目录和子目录。例如,如果数据在文件temp.txt且此文件在文件夹/home/test/example/,那么在linux上表示为:
setwd("/home/test/example/")
在Windows上,它将被表示为:
setwd("C: \mydata\test")
这里,有必要知道文件所保存的文件夹地址。
·读取文本文件
包含在文本文件的数据可以在R会话时使用扫描命令读取。
记住使用选项what= ” “扫描命令,这表明输入的字符将带有数据类型属性。
对于这个session,我已经创建了textsample.txtfile文件,它可以在R会话中读取。
> fdata<- scan("textsample.txt",what="")
现在,fdata将从文本文件中获取数据。
让我们先来回顾一些head(fdata)条目命令:
> head(fdata)
[1] "this" "is" "a" "sample" "file" "generated"
使用tolower将字符串转换成小写字母。
> fdata<-tolower(fdata)
文件中许多都是单独存储,其中存在一些重复词汇。
计算词的使用频率
> ft<-table(fdata)
查看ft的饼图情况使用命令:
> pie(ft)
从上面的图表可以看出,“file”和“the”的使用频率最高。
通过max命令可以很容易发现在英国《金融时报》使用频率最大的单词。
> max(ft)
[1] 4
查看该命令的输出:
> head(ft)
fdata
a be by can character command
1 3 1 2 1 1
图中点绘处显示单词在频率图对应的位置:
> dotchart(ft)
·读取文件数据的命令
大家都知道,一些最常见的数据文件都是csv和xls格式文件。csv文件用逗号分隔值,xls是一个excel文件扩展名。
一些最常见的数据文件格式,可以通过read.csv和read.table命令处理:
> read.csv("test.csv",header=TRUE)
1 Status Age V1 V2 V3 V4
2 P 23646 45190 50333 55166 56271
3 CC 26174 35535 38227 37911 41184
4 CC 27723 25691 25712 26144 26398
5 CC 27193 30949 29693 29754 30772
6 CC 24370 50542 51966 54341 54273
7 CC 28359 58591 58803 59435 61292
8 CC 25136 45801 45389 47197 47126
> read.table("test.csv",header=TRUE)
Status Age V1 V2 V3 V4
1 P 23646 45190 50333 55166 56271
2 CC 26174 35535 38227 37911 41184
3 CC 27723 25691 25712 26144 26398
4 CC 27193 30949 29693 29754 30772
5 CC 24370 50542 51966 54341 54273
6 CC 28359 58591 58803 59435 61292
7 CC 25136 45801 45389 47197 47126
·直接从网上获取数据
大家可以直接从网上读取数据。这些数据可通过网站链接获取,或通过R记忆URL直接获得数据。网络上的数据设置可登录http://lib.statNaNu.edu/datasets/csb/ch3a.dat。输入read.csv或read.table命令直接读取数据。
data1<-read.table( "http://lib.statNaNu.edu/datasets/csb/ch3a.dat")
> head(data1)
V1 V2 V3 V4 V5
1 07/08/91 47.33 52.82 19.58 17.78
2 07/09/91 42.58 53.25 9.42 6.06
3 07/10/91 59.55 56.32 19.83 14.81
4 07/11/91 52.92 50.06 15.08 9.75
5 07/12/91 55.25 59.50 28.75 27.21
6 07/13/91 54.75 56.80 27.83 20.84
data2<-read.csv( "http://lib.statNaNu.edu/datasets/csb/ch3a.dat")
> head(data2)
X07.08.91....47.33....52.82....19.58....17.78
1 07/09/91 42.58 53.25 9.42 6.06
2 07/10/91 59.55 56.32 19.83 14.81
3 07/11/91 52.92 50.06 15.08 9.75
4 07/12/91 55.25 59.50 28.75 27.21
5 07/13/91 54.75 56.80 27.83 20.84
6 07/14/91 35.33 40.88 11.83 15.65
data1以及data2是持有相同的文件不同格式的两个数据对象。
Reading Spreadsheets
·阅读电子表格
阅读电子表格数据,我们需要安装gdata库。
> install.packages("gdata")
> library(gdata)
读取这个包的数据,可使用新命令read.xls。
The data file test.xls can be read with read.xls(“test.xls”).
数据文件test.xls可输入命令read.xls xls(“test.xls”)读取。
Fill Spread Sheet Type Data Through the Editor in R
通过编辑R填补传播表类型数据
x<-edit(as.data.frame(NULL))
R中的数据集
可以使用显示R中的数据集的命令data()将可用数据集置入R中。
data(Airpassengers)
查看数据描述,使用命令:
help(AirPassengers)
查看实际数据,使用head命令:
> head(AirPassengers)
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21