大数据时代激活数据管理新思路_数据分析师培训
根据分析机构Gartner给出的定义,大数据就是那些具有规模大、速度快、种类多三大特征的信息资产。从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,并最终推动业务发展。
通过一系列处理,大数据可以帮助企业制定明智且切实可行的战略,获取前所未有的客户洞察,支持客户购买行为,并构建新的业务模式,进而赢得竞争优势。然而,实践往往会比理论来得更困难。企业要处理好大数据生命周期的每一个环节,就必须采用创新且经济高效的处理方法,并跳出传统的数据管理思维。
什么在掣肘大数据为企业带来价值?
咨询巨头麦肯锡曾说,大数据正在成为下一代企业竞争力,生产力以及创新的前沿,它必将为企业发展带来巨大的价值。但在现实中,许多企业管理者盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。无论整体规划、技术平台还是业务流程,大多数企业并未针对大数据分析做出特别的调整与变化。而传统数据管理体系正在阻碍企业从大数据中提取价值。
首先,企业管理者需要问清自己这样一个问题:“大数据如何帮助我的企业实现发展?”。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。即企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
其次,企业需要针对大数据分析来改变传统的业务流程与决策流程。按照传统企业经营方式,高层的主观意见会对决策造成决定性影响,这种现象到现在也还是非常普遍。让真实的数据来说话,这是许多企业管理者需要进行的观念转变。当然,收集更多的数据并不意味着就能够将数据转化为洞察,如果没有一个更适应大数据时代的技术架构,它也会让企业的转型变得难上加难。
第三,技术平台不是万能的,但没有技术平台是万万不能的。在很多情况下,我们会看到各种观点在弱化技术所起到的作用。事实上,这样的观点是比较片面的。要真正驾驭大数据,我们仍然需要一个过硬的技术平台来作为支撑。你很难想象用现有的SQL数据库来分析海量非结构化信息,大数据需要我们有一个更全面、更高效的平台来进行组织、处理和分析数据。同时需要考虑如何将大数据平台,与原有的数据架构进行最佳集成。
大数据时代的新思路:如何实现数据管理闭环
为实现上述目标,SAP总结了一套方法论,能够帮助企业思考以下几个问题,并加大数据转化为实在的收益:
1.我是否拥有目前所需的数据?
2.我能否获取这些数据?
3.获取数据后,我如何挖掘这些数据的价值?
4.业务环境发生变化时,我如何处理这些数据?
企业在进行数据管理方式转型的时候,需要从四个方面来把握并覆盖数据的全生命周期,即设想、创建、部署和扩展,并以此形成一个有机的闭环。根据这一方法论,SAP推出了有针对性的大数据服务,帮助企业从数据中获取全新洞察,进一步扩展业务功能,获得更多业务机会。
在设想阶段,企业需要制定一套大数据战略、路线图和计划。设想业务的发展方向并确定大数据将如何帮助企业以业务目标为切入点。在这一阶段中,SAP的数据科学家将帮助企业挖掘大数据的潜在应用场景,构建业务案例并确定大数据将为你的企业带来哪些价值。
制定好路线图和战略后,你可以利用SAP大数据服务创建一个支持大数据的最佳架构,从而实现目标。这一过程包括:安全集成新兴技术与现有投资;设计一个全面的基础架构,以从多个数据源(通常是现有数据集)获取数据;实施最佳大数据平台;以及将大数据的影响纳入治理政策范围内。
在部署阶段,也将是企业从大数据中获得回报的阶段。通过大数据平台,SAP大数据分析服务和应用实施服务能够支持企业运行分析应用,让企业进一步掌控全局,分析当前信息和历史信息。通过预测分析能力来提升业务成果;以绝佳的可视化效果传达和共享洞察;以及根据需求将信息交付给业务用户,并支持移动设备的信息共享。
最后,基于企业现有的大数据潜能,SAP大数据服务将让企业以一种最灵活、运营成本最低、且最能满足需求的方式部署解决方案,从而充分利用新环境,获取更丰厚的业务成果。通过内部部署、云模式或混合模式来部署解决方案。评估企业的现有功能,然后建立能力中心,推出企业所需的新技能,从而更有效地管理大数据并扩展大数据的影响力。
图一:如何开启你的大数据之旅(via SAP)
从评估大数据业务,到发现大数据价值、设计大数据架构,再到实施大数据平台、工具以及管理和优化大数据解决方案。SAP除了HANA这样的“全能型”内存数据平台之外,还能够为企业提供一个端到端的大数据服务组合。为企业进行大数据时代转型提供个性化的指导,从而充分利用不同流程的各种数据源,获取全新的、有意义的洞察。
总结
在充分认清大数据重要性的基础上,企业需要理解大数据之于业务的价值点,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据,进一步扩展大数据的影响力从而形成良性循环。让更多的员工,更有规律地,更好地利用那些可管理的数据,然后让业务逐渐能够基于数据来采取行动。通过这样的管理新思路,才能够真正让大数据为我所用。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31