该如何将大数据应用在网络营销上_数据分析师
如今“大数据”大行其道,那么该如何正确的将大数据应用在网络营销上呢?
什么是大数据?
根据我个人理解:在网络营销中,大数据就是通过不同的方法收集到客户以及潜在客户的信息资料,如客户喜好、联系方式、姓名、消费习惯等。
为何会想到使用大数据?
以前做SEO、电商推广的时候想的更多的是如何带来更多的流量,但是这几个月重新回到传统行业中,更加明白客户才是根本,而维护一个老客户的成本与开发一个新客户的成本是完全不对等的,流量旨在开发新客户,固然重要,但是网络营销想要营销,客户关系的维护与管理就更显重要了,而这其中大数据的收集与使用就是呼之欲出的了。
怎样收集大数据?
1.诱饵设计方案。如何获得客户信息资料,只有让客户主动将信息告诉我们才是最真实、有用的客户数据库。那么,如何让客户主动告知呢,这就是诱饵设计,有相应的诱饵,满足客户的需求与欲望,辅以相应的客户信息收集机制,客户不难将信息告知于你。譬如,你有一个行业内的精品且不公开的资料,需要这份资料的需要留下邮箱地址(当然也可以是QQ、微信、手机等),然后发送给留下的邮箱,相信需要这份资料的人不会不愿意留下他的邮箱地址的,这就是一份成功的用于收集客户数据的诱饵设计方案。
PS:因为这样的客户信息收集是客户主动提供,所以我们设计诱饵方案时必须考虑到用户的操作简单方便,越简单方便越好。
2.线下数据收集。其实,每个人、每一个生意都是有线下的圈子、客户的。尤其是对于现在进入电商的传统企业来说,线下客户数据是一份优质的资源,譬如经销商的客户购买信息的录入与整理等等。
3.相关相近行业合作。尤其是不同产品但是属于相同或相近行业的。萧伯纳说过:“你有一个苹果,我有一个苹果,我们彼此交换,每人还是一个苹果;你有一种思想,我有一种思想,我们彼此交换,每人可拥有两种思想。”,同理,这个道理用于客户数据的收集与整理也同样适用,如果有2个公司同为出售汽车产品,一个公司出售汽车灯,一个公司出售汽车坐垫,这样2家公司完全可以达成合作关系共享客户数据,这样可以增加一倍的潜在客户。
4.其他。如有某些平台出售客户信息资料。
常用的大数据信息有哪些?
个人觉得客户信息的收集当然是越完善越好,如客户喜好、阅读习惯、消费习惯、收入情况、工作、职位等等,这样能够更加完善的分析客户需求,当然,考虑到方便于利于分析的原因,我们现在网络营销中常规使用的客户信息主要有邮箱、QQ、电话、微信号等联系方式,然后根据对应行业分析几个重要的信息维度,以此组成完善的客户信息数据库。
大数据如何使用?
1. 信息的收集与整理。收集自然不必多说,重要的是在数据的整理。根据不同的维度有条理的整理,譬如根据联系方式(影响到内容推送渠道)、信息收集渠道(影响到内容推送政策、时间、产品需求等)。很简单的一个例子,一个公司经营有不同的产品,如果你没有在客户信息数据库中将客户信息分开整理列表,而是将所有的信息一股脑的都推送给同一个客户,那么造成的结果可能是:轻则推送的内容信息、产品不能达到应有的效果,做无用功,费时费力罢了;重则导致客户对推送的信息产生厌烦、抵触情绪,或取消关注的信息,或直接忽略,或直接放弃购买产品……。
2. 内容的推送。这个涉及到内容推送渠道(如微信、QQ、邮箱等)的选择与内容推送机制(如内容推送周期、内容定位、内容展示方法等)。确保信息能够及时、准确的传达到客户手上。这一个步骤与上一个步骤:信息的收集与整理是一脉相承的。
3. 效果的监控。内容发送到客户手上并不代表万事大吉,信息的展示量、点击量、咨询量、成交量(转化率)等数据监控是保证效果是否优秀的凭证,也是后期方案制定和改进的参考,所以一个合理的数据监控机制是必不可少的。
4.持续改进。大数据的利用是否合理,内容推送的时间是否恰当,内容推送是否合理,这个不是一蹴而就,不能一次性的完美,只有通过一次次的实践与数据分析,然后才能一步步的改善,使大数据的使用更加完美。
使用大数据的好处?
1.潜在客户的增加;1 1=2,信息的交流不同于2个人苹果的交换,如果能够建立相同、相近行业之间(其实相同的产品也是可以存在的,毕竟存在品牌、地区等方面的差异,要视具体情况而定)的合作联盟,并能够互相共享客户资源,如果有20个相同规模的企业,那么这20个企业就都有了相对于自己20倍的客户资源了;
2.客户关系的管理与维护;不论是传统企业与网络营销,客情关系的管理都是不可缺少的部分,利用大数据对客户分类整理,不同的时间、节日等等奉上不同的内容与活动,这对于企业的客户关系、企业形象、订单成交量、企业曝光量等等方面都有积极正面的作用。
3.赢利能力大大增强。网络营销的根本就是赢利,老客户多次购买能力的增强,更多潜在客户的挖掘,无疑会网络营销订单的增加有很大的促进作用。
结尾
当然,以上内容本人并没有亲自实践操作,只是本人经过电商推广工作后的一些想法!说起来容易,做起来当然不会简单,中间也会遇到更多的问题。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21