2015年至未来三年,中国的云计算将越来越成为一种基础设施,不使用云计算的场合会越来越少。未来企业级云计算在微观层面将趋于智能、敏捷、简化;在中观层面将强调可信可靠;在宏观层面将构筑大生态。
智能
新一轮科技革命和产业变革正在兴起,全球科技创新呈现出新的发展态势和特征。这场变革是信息技术与制造业的深度融合,是以制造业数字化、网络化、智能化为核心,建立在物联网基础上,同时叠加新能源、新材料等方面的突破而引发的新一轮变革,将给世界范围内的制造业带来深刻影响。以智能制造为代表的云计算微观层面的应用将在未来三年大放异彩。受发达国家工业回流的影响,与“工业4.0”相对应的《中国制造2025》也将在2015年出台,将极大促进中国制造业的转型发展。
敏捷
企业级云计算将帮助用户提高业务的敏捷性。云服务提供商不仅需要关注客户的IT需求,更要替客户去考虑他们的客户(end user)需要什么,并且把对终端客户的需求理解融入IT的重构中。在中国经济“新常态”背景下,每个企业都面临着巨大的业务压力,有限的IT预算必须投向能够直接改善企业业务的应用领域。然而事实上,中国个人移动云服务应用已经十分广泛,但“撒手锏”级企业移动应用还较少,这是企业对云服务热情不高的直接原因。
再则,我们从这个词汇的基本含义出发来考虑“敏捷”二字:一些机构采用云计算架构之后,发现IT系统的响应速度非但没有提高、反而变慢了;这也影响了企业采购云服务的积极性。因此云服务提供商必须与用户共同考察、规划新的IT架构,在技术上确保原有IT架构到云计算的平滑迁移、实现无缝对接。
简化
随着移动互联网技术的飞速发展,BYOD(Bring Your Own Device,自带办公设备)已悄然成为了一种新的办公模式。无论企业愿意与否,廉价且配置较高的移动智能终端设备以及日趋成熟的应用系统,大量私人设备进入办公场所已成为不争的事实。BYOD的兴起使得企业的IT环境越来越复杂,并且极大地影响着企业的安全基础架构、安全政策。
面对海量数据的增长,传统的IT架构和数据处理方式无法有效地应对大数据环境。数据的存储、计算、管理、分析等节点都需要适应大数据需求的方案,同时也要满足性能上的扩展。
未来企业部署云计算,必须能够有效简化IT架构,并且帮助企业降低大数据平台的复杂性,简化运维,提升资源活性和利用效率。能够做“减法”的云计算才是未来需要的云计算。
可信与混合云
长期困扰中国云计算用户和服务商的安全和隐私保护问题或许有另一种解决思路,那就是第三方的可信可靠认证和混合云架构。
目前中国大部分用户对云计算的态度从“用不用”转变为“用谁的”,那么云服务认证体系的逐步健全将使用户更加信赖那些通过了“可信认证”的服务商,一定程度上给云服务“松绑”、摆脱长期困扰用户的安全魔咒,云服务——尤其是公有云市场将实现发展的突破。
2014年7月,由工信部指导,工信部电信研究院、中国通信标准化协会主办,数据中心联盟和云计算发展与政策论坛承办的“2014可信云服务大会”正式发布了第一批通过“可信云服务认证”的云服务提供商名单并颁发证书。目前国内公有云发展还处于市场培育期,用户还未对公有云建立充分信任。这一认证无疑将让云服务变得更加具有可信性,有利于国内云平台的规范和发展,亦在一定程度上提升了因安全性而广为用户担心的公有云服务的可信赖度,将逐步消除用户使用云计算的安全担忧。在可信云服务的认证体系下,云服务商所提供的服务协议和运维管理的规范程度都将得到认证和评估,用户可根据评估认证结果择优选择云服务商,从而获得可信、安全、高质量的云服务。
采用混合云架构也是未来企业级用户降低安全风险、同时节约IT支出的主要措施。将关乎自身利害的核心应用置于私有云,而将不那么敏感的数据和应用置于公有云;这将是政府机构和大型企事业单位的折中选择。
大生态
中国已经拥有非常完整的云计算产业链,但是产业链各环节的合作并不那么“默契”。我们更多地看到的是,大型的IT企业都在努力打造大而全的自身链条,即使有企业间的合作,也往往是“弱弱联手、抱团取暖”,真正的“强强联合、共享江山”则少之又少、少到几乎看不见。中国云计算生态环境尚不成熟,目前的合作模式仍相对传统,服务商和渠道商缺乏创新的合作模式,无法满足用户对云计算的价值需求。传统模式的问题在于:丙方协助乙方卖产品给甲方,这一过程中价格层层加码,服务价值却未能同步增值;最后甲方因性价比超出承受能力而不买账,而乙方、丙方都没赚到钱,从事云服务业务多年还是没有真正发展起来。
环境永远是变化的,只有这一点是不变的。而近两年中国商务环境的变化比以往任何时候都要来的迅猛,完全颠覆了社会生活的诸多方面。传统的单维链条生态体系正在解构,越来越多的IT厂商开始快速转型,重新构建更为多元、更为开放的复合生态体系,将自身价值有机融入整个生态圈中,为用户提供差异化的价值体验。未来企业可能选择全新行业的合作伙伴、采用全新的合作模式,为用户创造价值。用年轻的心态、创新的理念、自身的调整去拥抱、去适应这些变化,在变革中生存、在变革中强大,这是未来行业领袖的必备素质,成为引领时代变革者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31