大数据时代企业所需的三大技术_数据分析师培训
作为IT领域的关键词,“大数据”不断被大书特书,对其分析利用也备受关注。另一方面,靠IT技术、现有的组织和人才技能解决不了的难题也渐渐浮出水面。这就需要“分析数据及其与业务相结合的技术”。
本文总结了将数据分析应用到业务中所需的技术,以及怎样在企业中实现有效的信息应用。同时,还列举了日本国内外的先进事例。
三大技术
下面,我们来看一下大数据时代企业所需的技术有哪些?
业务技能
这里的业务技能不是指提高业绩的能力,而是指将业务过程标准化、掌握各个过程中哪些信息需要输入、记录等能力。
以经营活动为例。通常,将一些促销活动的问卷调查中有望成为真实客户的顾客信息录入CRM(顾客管理系统)系统,销售负责人在此信息的基础上开展营销,顾客感兴趣的产品、服务等将作为数据输入CRM系统。接下来,如果顾客购买了产品,在结算系统输入结算信息,如果是货物的话在物流系统输入、生成物流信息。像这样,掌握数据是在哪一过程中、什么活动中生成的非常重要。
此外,哪一过程、或者在哪一过程生成的数据会对业务的结果产生较大影响等,与其感性估计,不如对相关数据进行分析、形成模式化。例如,与顾客的年龄、性别相比,从事哪种职业对购买概率的影响更大等。
数学技能(模式化、样本化)
其次是分析数据所需的数学技能。此前,说到分析业务数据的技能的话,都是些求合计、平均值和标准差等简单的统计学知识,但以后,通过分析数据研究出业务的规律性,形成“模式化”、“样本化”技术非常必要。这在科学界是一种常见手法。例如,理想气体状态方程“PV=nRT”,就是将气体的状态用模式化的公式表现出来。
同样,在业界,也需要将商业活动的状态形成公式化的分析技术。例如,连锁超市可以根据店铺的位置,计算出各种条件下(销售业绩、天气、气温、星期几等)的客流量和每种商品的销售额,找出规律,就可以做出更适当的调整,也能减少亏损、改善盈利。
IT技术
IT技术也不可或缺。首先,就是与数据库相关的技术。需要分析的数据保存在哪儿、AGE和JOB等数据库中涉及到的项目怎样与实际业务术语相结合等,现在都可以通过IT手段来实现。但是,目前大多数企业面临着业务之间的业务术语不统一、数据库零散不成规模等问题,仍然还有很多要依靠人来解决的东西。
今后,通过IT技术解答公式的能力将越来越重要。例如,假设商品的销售额与顾客年龄的关系,用公式“销售额=a×年龄”来表述,系数a就可以通过IT技术求出。这是非常简单的线性回归问题,数据量小的话就可以用Excel等电子表格软件求出a。此外,也可以用SPSS和R等专业统计分析软件。更复杂的情况,就需要创建一个程序来求系数,拥有此项技术的IT工程师就可以说是珍宝了!
保证人才很重要
介绍了以上三种技术,但遗憾的是,日本企业里并不存在拥有以上全部技术的超人。那么,如何培养拥有这些技术的人才呢?
无论哪一种技术都是很专业的,都不是一朝一夕就能掌握的。但其实,掌握着业务技术的人就在各个业务部门,掌握IT技术的人才就在信息系统部门。
看上去很难的数学知识,对理科系的研究生来说往往并不算什么。物理、化学等领域中,也不乏将自然科学公式化、并研究怎样才能得出精确度更高的公式的人,而这其中有很多有经验的人才,将自然科学应用到业务活动中并非不可能。
将这些人才从各个部门集中到一起,组成进行数据分析的专业小组,不是现在立刻就可以开始做的事情吗?然后,将小组置于经营企划和业务企划等制定企业发展战略的部门,成为支持企业竞争优势的关键力量。
从小事做起
掌握数学知识可能比较难,但应用软件解答课题并不是解答数学难题。大家手边所有的电子表格软件,就能进行简单的回归分析,也有很多更高级的分析软件,可以帮你解决更复杂的问题,这些弥补了数学知识的不足。
实际上,已经有在分析技术上进行投资并获得成功的企业。丹麦Vestas Wind Systems,是从事风力发电机设计、制造、销售的公司,它将大数据分析运用于业务中,通过持续地、公司全体有组织的工作收获了成功。在组织化的基础上增加持续性,可以更有效地运用分析。
在日本,也有几位IT工程师将大数据分析做成项目并不断取得成果。在这个过程中,与分析相关的数学知识的不足部分有像IBM一样的数学解析团队和大数据分析软件供应商的支持,弥补了之前所说的三大技术的不足,成功取得了成果。
同时,也有企业成立了100人以上的专业分析团队。集齐IT和业务双方的人才成立分析团队,通过实际操作重复着“试验--错误”的过程。经过这一过程,企业不断得到小小的成功体验,分析水平也逐渐提高。而企业应该最先着手的就是培养拥有必要知识技术的人才。
目前,这种涌现大量且多样信息的业务环境中,无论哪个企业都有分析需求。而熟练应用最新的IT工具、具备更好的洞察力将成为拉开企业之间差距的关键。
本文总结了要把数据分析应用到业务中所必需的知识和组织,以大数据的盛行为契机,重新审视数据分析的企业并不少。即使不能全公司大规模的进行,也应该尽快从可以做的地方着手,从小事做起是关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04