这个社会没有任何一个时候会充斥着比现在还多的可利用电子数据。谷歌通过分析词条搜索预测了大型流感的爆发;美国国家安全局可谓对这项可以察觉恐怖活动的技术垂涎欲滴。但随着科技的进步,旧有规则的过时,在这一时刻,人民们正处于各种组织与政府的监视下。
作为《数据与巨人》的作者,一位计算机安全专家,布鲁斯•施奈尔的确拥有解释这一问题的最佳立场。关于强制性的信息收集,他提出了许多可以保护社会大众不受这一恶劣暴行伤害的方法。但挑战依旧严峻,因为随着科技进步,大批量信息的搜集并不是刻意的,而是通过一些无伤大雅的普通渠道。
在商业方面,个人信息变成一种原材料。许多智能手机应用程序是免费的,因为开发销售用户个人数据的公司几乎没有成熟的协约条款和条件。如果想要免费服务,那么你将成为硅谷大数据流里的常客。
人们甚至不用披露他们的精确信息。数据从他们的行为模式和社交网络中被分析出,而这能造成的伤害绝对是令人毛骨悚然的。这意味着也许网购价格会提高,因为算法程序预测出你可以支付得起;也许你会遭受到种族歧视,因为算法程序早就通过你的邮编、你的Q&A问卷将人种“不小心”加以关联。法律上的缺失和信息透明度使得每况愈下。
虽然施奈尔先生竭尽全力书写对政府监控的不满,但他也不得不承认它的必要性。因为事实上,在国家关系方面,知己知彼总是会更有把握一点。本书还把矛头指向另一点——美国情报机构对这一摄人的技术的管制缺失。在这方面,施奈尔先生也是专家,他曾帮助英国《卫报》解释2013年由霍华德斯诺登泄露出的机密文件里的专业知识。
自2001年911事件以来,施奈尔先生亲眼见证了监测方式发生了令人担忧的变化。首先,现代社会的安全威胁多半来自团体或者个人而不是其他国家,所以监控针对的是人民而不是政府。其次,由于网络是共用的,你搜集一个人的数据的时候会连带许多无关人员。再次,科技技术的急速进步使得监控规则仅仅由过去的假设来支撑。
结果是,你想抓获一个人就必须把所有人都捞入网中。美国情报界被赋予了前所未有的权力,如果不加以控制,就会破坏这个社会的自由。那些和平组织不停地提出质疑,例如,一个人应不应该在几乎没有法律保护的情况下接受手机追踪。
这种极客把戏只是国安局几种故事般的手段之一。还有更令人警惕的呢。通过NSA的文件我们得知,特工机构可以拥有全国人民的手机通话记录,就像他们对阿富汗做的那样。每一部手机,每一通电话。“这是合法的吗?” 施奈尔先生问道“事实上,我们也不知道”。
这本书描绘了一幅令人寒心的画面,那就是国家在监视着那些实际上无碍于国家安全的反战人士和本土穆斯林教徒。NSA利用“监督”这个字眼去误导法院;法院也情愿睁一只眼闭一只眼;而国会只想掩盖这些事。国安局选择他想披露的,而且任何有关文档都会被锁定在一个特定的房间里。考虑到控制的松散性,这本书实际上说了很多关于美国情报机构的廉贞性,这确保不会有更多滥用行为的发生。
对于美国政府监视授权的主要法律文书和它们的缺陷,施奈尔先生无疑是一个很好的叙述者。其中有一个被称为“第三方原则”的条例,使得情报机构自 1970年代开始可以很轻易地获取愿意主动移交信息的人的数据。在那时,这些可以被称为记录的数据通常是为电话公司所持有的通话记录。但是现代社会,置于监视下的电子邮件信息和网上文件却缺少法律保护。
施奈尔先生很好地分析了问题,但他的解决方案包含一些过于老旧的东西。为了防止数据的商业开发,他提议了一种十分受用的“信息信托”方案,在人民和机构之间寻找一种有效的数据中介。但他也建议颁布强有力的的规则以防止商业公司在第一时间收集过多的数据;这很有可能可以减少滥用,增加利用,就像谷歌。
同样地,他也呼吁更好的监督机制和对于揭发人更好的保护措施来限制政府的权利。但他“打破国家安全局陈规”的建议无非是理想主义的。分配和监督权利的确有效避免了很多机构不健康的权力集中。但执行所需的专业技能和巨大的资源使监测活动需要相应的集权措施。也许最好的方法是改革加强现有的法律监督系统,而不是改变它。
记者们最近写了一些关于数字化隐私的书籍,都是添油加醋经过润色的,而不是原始的分析。这本书出自一个实践者笔下,为您提供一个描绘具有深度,斯诺登化的大数据领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31