大数据下的互联网金融精细化运营_数据分析师
在刚刚过去的两会中,政府工作报告首次提出“互联网+”概念,互联网与各传统行业的“加和”效应迎来了一波全民讨论的热潮。
传统行业以金融为例,在与互联网的“加和”历经创新、阵痛、借鉴、突破、融合之后,“互联网+金融”已然深刻改变了传统金融的经营模式和经营格局。近年来不断涌现的新兴服务和模式:第三方支付、手机银行、手机理财、互联网货币、P2P、众筹,让“互联网+金融”的力量一再彰显,也让更多的“长尾用户”享受到了普惠的金融服务。
尤其在今天,伴随着移动互联网和大数据技术的成熟及应用,互联网金融更将迎来几何倍的爆发式增长。企业如何持续依靠技术驱动进行创新性发展?大数据如何助力企业的精细化运营?4月8日,国内第三方消息推送服务商极光推送联合宜信宜人贷、中国社会科学院金融所银行研究室及金融大数据公司量化派在3W咖啡举办了一场科技沙龙,探讨“大数据下的互联网金融精细化运营”话题。
会上,宜信宜人贷CTO段念以宜人贷推出的国内首个大数据信贷产品——“极速模式”为例,解答了关于“互联网+P2P”,那些已经发生的、正在发生的、将要发生的。
宜信宜人贷CTO段念
互联网+P2P不是线下的搬运工
P2P是个充满挑战的行业:隐性门槛极高、充满机遇却也暗藏风险。特别是在中国现有信用体系不健全和行业监管缺失的前提下,P2P的行业环境更加鱼龙混杂。
近年来随着P2P平台挪腾线上,欺诈成本降低、欺诈手段变换,平台的信审和风控机制也亟需迭代,为线上P2P平台提出了严峻的命题要求——不但要引入线下的规则作为参考和经验,更要广泛采集用户信息和行为,来打造全新的信审和风控模型。
极速模式国内首款大数据信贷产品
2014年4月,宜人贷推出了国内首款大数据信贷产品——“极速模式”。这是一款面向具有“充分互联网行为”人群的手机借款服务。
在“极速模式”下申请借款的人群,至少需要满足两个条件:一,拥有信用卡以及接收信用卡电子账单的邮箱;二,拥有电商网站的账号及真实的交易记录。
采集信用卡账单及电商网站信息后,系统结合用户提供的个人信息——如手机号、姓名、身份证以及银行卡,将这些数据放入后台的反欺诈系统,反复交叉验证用户数据,作为判断是否授信以及衡量授信额度的依据。
上线一年来,“极速模式”现已达成“1分钟授信,10分钟审核”,最快当天到帐、额度最高十万元的快速借款。目前累计放款突破9亿元,为超过百万的用户提供了信用评估服务。
极速背后线上之上
开发“极速模式”的初衷,是基于宜信九年服务百万用户的风控经验,更是联合宜人贷“线上”和“指尖”科技达成的创新成果。
互联网要求“轻”而“快”,用户的痛点是“快速”和"便捷";金融要求“缜密”和“严谨”,企业的痛点是风险控制。落地到“互联网+P2P”的命题下,则是用户渴望“输入信息少、审批速度快”和企业希望“审批信息多、过程更翔实”;看似对垒的两方需求,如何通过互联网和移动互联网技术来解决?
第一,线下信息如何转移到线上?
凭借互联网技术,线下所需提交的信息有了更高效的采集方式。原本动辄四、五十项信息的手工填写,如今只需要用户简单的信息录入和“授权读取”操作,系统便能够自动完成。
以通话和信用卡账单为例,原先需要用户本人去营业厅和银行查询、打印并提交,如此一来用户体验很差,二来人工审核造假成本也较高;现在,通过“极速模式”,只需要录入信用卡账单的接收邮箱及手机号,不但系统可以秒读信息;而且信息可以迅速放入反欺诈模型中进行识别校验。
第二,更广泛的信息搜集渠道。
除此之外,“极速模式”背后有一套代号为“蜂巢”的信息抓取系统。我们从不同维度采集用户信息,比如电商网站以及一些散落在互联网上的边缘性信息,用来丰富用户形象,以得到更精准的数据分析结果。
第三,更多重的甄别手段。
互联网技术的发展,尤其是移动互联网技术的发展,为我们收集更多纬度的信息,实现多重甄别提供了技术上的可能。
例如,手机App可以自然地提供用户的地理位置等信息。如此一来,恶意造假的黑中介造假成本便大大提高了。一旦黑中介通过手机客户端提交借款申请,我们便可以基于其地理位置进行数据分析,针对提交频率高、逾期率高的地点进行额外的风险观察,从而建立基于地理位置的黑名单区域。
线上和指尖是未竟之境
互联网和移动互联网技术帮助企业获得更广泛和真实的用户数据、更多重的甄别手段,P2P平台基于此将陆续展开大数据下的精细化运营。
据CTO段念介绍,宜人贷“极速模式”较之以往模式不但快的多、轻的多,而且逾期率也非常低,未来会进一步推广和迭代。
接下来,宜人贷会朝着“线上”+“指尖”的方向继续前进,在“未竟之境”通过技术手段持续提升平台效率,为更多的借款人和出借人提供高效优质的金融服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31