解读《大数据时代》:大数据时代的神话
地球人都知道我们处在大数据时代,或许地球人也都知道关于大数据时代最著名的一本书就是迈尔-舍恩伯格所著的《大数据时代》。
我本以为大数据这么高深的学问绝不是我们这样的屌丝能够理解或者使用的,所以一直对此书敬而远之,不敢阅读。不料周边谈论大数据的人越来越多,谈论《大数据时代》这本书的人也越来越多,似乎不读《大数据时代》,估计连屌丝都做不成了。所以斗胆请来《大数据时代》。一读,果然不懂,许多疑问。
何为大数据?
这是一个很令人困惑并且绝对屌丝的问题,平时都不好意思开口问别人,希望从书中得到答案。遗憾的是,迈尔大叔在书中就根本没有告诉我们什么是大数据,这对像我这样习惯在课堂里死记硬背的学生来说,就产生了轻微的智障:怎么似乎什么都是大数据。可要我记住哪一个却十分困难。
看完此书,我只能回答说大数据就是数据多数据大。可是这个回答似乎有明显的问题。迈尔大叔在书中就举了一个大数据的例子,这个大数据只有“4000”和“两小时”。
在解释大数据时代不需要精准性时,迈尔大叔这样写道:
“互联网上最火的网址都表明,它们欣赏不精确而不会假装精确。当一个人在网站上见到一个Facebook的“喜欢”按钮时,可以看到有多少其他人也在点击。当数量不多时,会显示像“63”这种精确的数字。当数量很大时,则只会显示近似值,比方说“4000”。这并不代表系统不知道正确的数据是多少,只是当数量规模变大的时候,确切的数量已经不那么重要了。另外,数据更新得非常快,甚至在刚刚显示出来的时候可能就已经过时了。所以,同样的原理适用于时间的显示。谷歌的Gmail邮箱会确切标注在很短时间内收到的信件,比方说“11分钟之前”。但是,对于已经收到一段时间的信件,则会标注如“两个小时之前”这种不太确切的时间信息。”
4000个“赞”或者两小时(120分钟)也是大数据?我开始崩溃了!
我想是不是迈尔大叔可能考虑到我们对过万的数字数不过来所以有意简化,挑选我们能够理解的“大数据”来说明他的论断。
指鹿为马是谓荒唐。可是,如果对马没有定义,那指鹿为马就无所谓了。
呵呵,迈尔大叔还真幽默。
何为大数据时代?
我读西洋人写的书,总是觉得读书时很爽,读完后基本记不住。读《大数据时代》也有同感。很多很多的大数据例子,读完合上书后基本上一个都记不住。不过迈尔大叔可能知道我的这个毛病,所以提纲挈领,总结了大数据时代的三大特征。这就是地球人都知道的大数据时代的三大特征:1)不是随机样本,而是全体数据;2)不是精准性,而是混杂性;3)不是因果关系,而是相关关系。
一本书,三句话,一个时代的特征!楚汉河界,泾渭分明,一目了然。
小数据时代是随机样本、精准性和因果关系,大数据时代是全体数据、混杂性和相关关系。
可是我的脑子就是转不过来,没法从迈尔大叔的三个简单扼要的特征总结中悟出大数据时代来。这个看上去忒简单的总结,其实真的很深奥。简直可谓深不可测!
一大堆的问题等着迈尔大叔来回答。
比如说,是不是大数据时代就不要随机取样分析了?小数据时代是否也有所谓的全体数据?比如说30年前互联网未流行前美国银行或保险公司拥有的数据是不是全体数据?怎样定义全体数据?谷歌、百度、FACEBOOK或者腾讯,哪个公司拥有所谓的全体数据?为什么有了全体数据分析就要完全抛弃随机样本分析?如果考虑到随机样本分析会影响到分析结果的精度,不是大数据时代不追求精度吗?
关于大数据时代不要精准性,我怎么也拐不过弯来。你说,大数据时代的老师教学生“2+2或许等于3.9”,公司会计记账错了也可以对老板理直气壮地说“现在是大数据时代了”,甚至到饭店吃饭付账也不要精准了....。.呵呵,这日子还让不让人活啊?!
还有有关因果关系和相关性的问题,这也要命!我一直认为人与猴子的根本区别在于人喜欢问个“为什么?”。原本两个猴子,一个不断好奇地问“为什么日落就要睡觉”,结果大脑不断进化变成了人;另一个只是看到日落就上树睡觉,结果至今还是猴子。现在好了,大数据时代不需要问“为什么”了,岂不苦了我们从猴子变人过程中长期培育起来的好奇心了。
因果关系与相关关系的区别,就是因果关系在相关关系上问了个”为什么“。
流传甚广的有关超市将啤酒与尿布一起卖的大数据例子。说是通过大数据分析发现,人们在买尿布时通常也会买啤酒,于是就将啤酒与尿布陈列在一起卖。
如果你生活在大数据时代,故事到此结束了。
如果你还好奇地想知道为什么人们买尿布时要买啤酒。呵呵,对不起,你和我一样还生活在小数据时代。
我们无疑生活在一个互联网的时代,这是一个充满海量数据的世界。数据的多种形式、数据的多种来源、数据之间的多种复杂的联系,都使我们这个世界变得更加神秘但也更加激动人心。这就是大数据时代。
对大数据时代的探索,犹如当年美国对西部的探险,充满许多传说和神话。《大数据时代》或许可能就是这样一本充满神话与传说的探险记。我们为之心动,但依旧要活在现实的生活中,现实生活中的那些规律依旧适用。
即使是大数据时代,我们依旧需要问”为什么“,我们依旧需要教会孩子“2+2=4”,我们甚至依旧要做随机样本分析。
大数据并没有改变我们现有社会的基本生活逻辑。
大数据时代,平常人,平常心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17