大数据与电网的融合将成为未来电网的发展方向
近些年,随着全球经济总量和规模日益加大,全球面临的能源资源瓶颈和生态失衡日趋严重。根据国际能源署测算,目前,煤炭在全球一次能源消费中的比重约为27%,石油为33%,天然气为21%,化石能源合计为81%。而包括水电、核电、风能、太阳能、生物质能在内的非化石能源等仅占19%。未来,新能源比重拓展空间十分巨大。
国家电网公司董事长刘振亚在其著作《全球能源互联网》中,提出的清洁替代和电能替代(“两个替代”)对改变全球能源秩序,维护全球能源安全,重塑全球能源治理架构,实现人类能源可持续发展具有极为重大的战略意义。“两个替代”代表着全球能源发展的大趋势,也代表着全球能源治理的新架构。
从国内情况看,中国经济社会发展面临资源制约、环境污染、生态退化的严峻挑战,粗放的资源依赖型的发展方式已难以为继。2012年,我国一次能源总消耗已达到36.2亿吨标准煤,占全球的21%,创造了11%的GDP。我国单位GDP能耗是世界平均水平的2倍,是发达国家的4倍,高能耗、高排放、低效率的发展方式导致总能耗不断上升。我国工业行业单位能耗,如粗钢能耗、水泥综合能耗、有色金属综合能耗、炼油单位能量因数能耗、乙烯综合能耗以及火电供电煤耗等,与世界先进水平相比仍有较大差距。近10年来,我国能源消费弹性系数平均高达0.7左右,能源环境压力和发展瓶颈日益增大。
国际经验表明,发达国家在第一和第二次工业革命中,对化石能源的过度消耗和对地球环境容量的过度占用,造成了今天世界性资源缺乏和全球生态安全以及气候变化等全球环境灾难,严重压缩了未来全球的资源供给和环境容量的空间。因此,发展中国家不可能再沿袭发达国家以无节制地消耗地球资源和以生态环境损坏为代价的工业化模式。
当前,仅占全球国家数额20%的发达国家拥有10多亿人口,其人均能源消费高达6.5吨标准煤,是发展中国家的3.8倍。在其能源消费总量基本趋于稳定的情况下,可以通过大力发展可再生能源来替代化石能源消费,改善能源结构,逐渐向可再生能源体系过渡。
此外,全球能源消费与资源禀赋之间存在空间的异质性,如何克服能源分布的不平衡和禀赋差异,使其更有效率地服务于整个人类社会,形成覆盖全球的能源供需平衡与调节体系,是未来世界可持续发展面临的巨大挑战。我们需要一种新的全球能源体系和能源治理架构,以解决上述发展困境和难题,因此,全球能源互联网呼之欲出。
随着以制造数字化、能源网络化、电力分散化、汽车电动化为核心的第三次工业革命的到来,以互联网通信以及分布式可再生能源相结合的全球能源互联网正在形成。
全球能源互联网由跨洲、跨国骨干网架和各国各电压等级电网构成,连接“一极一道”(北极、赤道)大型能源基地,可适应各种集中式、分布式电源,能够将风能、太阳能、海洋能等可再生能源输送到各类用户,是服务范围广、配置能力强、安全可靠性高、绿色低碳的全球能源配置平台,具有网架坚强、广泛互联、高度智能、开放互动的特征。
全球能源互联网可以有效解决全球能源资源分布和市场需求严重失衡的问题。如今,贸易全球化、生产全球化、金融全球化、区域经济一体化等早已渗透到能源领域,各国能源相互依赖加深,能源安全已经超越消费国和生产国的界限,呈现出全球化的特征。以石油为例,中东和俄罗斯石油产量约占全球的45%,其消费量只占13%;北美、欧洲和亚太石油产量只占全球的36%,而消费量却占76%以上。
在清洁能源消纳方面,由于能源消费市场不集中,加上风能、太阳能集中规模化开发,特高压远距离电力传输技术正成为必然趋势。因此,要消纳更多清洁能源,并且解决分配消费市场与能源富集地的之间的矛盾,必须加快全球能源合作,实现“能源一体化”,创造一个更加一体化、竞争充分的市场和能源合作机制。比如,建立地区性共享能源储备,构筑面向未来的,包括天然气管道建设、智能电网建设、新能源网络建设在内的能源基础设施蓝图等。
全球能源互联网带来能源使用形式、生产方式、存储形式、分享机制等广泛变革。根据世界生物能源协会预测,到2020年,30%的电力将来自绿色能源。以交通为例,到2030年,电动汽车的充电站和氢能源燃料电动车会普及全球,并将成为提供分散式输电、送电,且可移动的电力基础设施。到2040年,75%的轻型汽车将由电驱动。电动汽车将成为能源互联网的基础设施,为氢燃料车、家庭和工厂提供充足的电力,并形成全新的经济模式。
随着大数据相关技术的发展,能源管理智能化已经成为新的大趋势。一方面,能源产业可以利用大数据分析天然气或其他能源的购买量、预测能源消费、管理能源用户、提高能源效率、降低能源成本等。另一方面,大数据与电网的融合可支持智能电网的发展,涉及从发电到用户的整个能源转换过程和电力输送链,与智能电网相关的,如智能电网基础技术、大规模新能源发电及并网技术、智能输电网技术、智能配电网技术及智能用电技术等,都是未来电网的发展方向。
因此,做好能源互联网的战略顶层设计已经势在必行。我国必须以发展能源互联网为契机,加快提升基础制造和能源生产能力,做好关键技术和设备的储备,将积极发展全球能源互联网提升为重大的国家战略。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21