大数据为什么一直火不起来?投资人说,商业模式不清晰不愿投资
大数据由来已久,在国际真正兴起普遍认为是,2009年美国奥巴马把政府的数据开放以后,而2011年的麦肯锡发布的一份报告引起了整个行业的革命。在国内是2012年9月,国务院出台了相关大数据产业化的内容。
随着高度互联和大数据时代的到来,经济领域和社会生活诸多方面均呈现海量数据的特征。大到“智慧城市”,小到“量化自我”,大数据所代表的数字化生活无处不在。庞大的信息群为数据深度分析带来新的挑战,而挖掘大数据应用的商机,则为现代企业发展管理决策提供重要价值。掌握应用数据分析方法、应用环境、应用技巧和局限,亦成为决胜互联网以及移动互联网时代的必胜法门。
在“科创通----投资界系列沙龙第二弹:洞察大数据应用”上投资界人士对大数据一探究竟。
投资界“洞察大数据应用”沙龙活动现场
有了大数据,电影未上映就知道票房盈亏不再是梦
东信首席战略官郭利锋指出,“现阶段,我们做的其实还是通过大数据对消费者进行分析拆分,分类以后所谓的消费者群体的投放。随着各个领域和各行业的数据,特别是线下的数据。”
“我们专门做了一个基金投电影。电影在没有拍之前做相应的预测,判断你赚钱还是赔钱,如果是赚钱的项目就投一笔钱进去,最终回报不是说我把数据卖给你们,而是我利用数据做投资。”海银资本合伙人李东平说。“赚多少,赔多少,具体的数字准度大概是80%。”
那么,海银资本是如何利用大数据推测出电影票房的?李东平给予了详细解读:
“电影票房预测核心就是通过在互联网上的言论、表现、社交关系,把你整个这个社交网络里边的人做一个分群——是喜欢看动作片还是喜欢看惊悚片……喜欢在什么时间看。所有的这些模型构建出来之后,是喜欢看谁拍的,是哪个导演拍的,哪个演员演的?所有这些模型构建出来之后,你出来一个片子,甚至没有拍,你把故事梗概放进去——是谍战的,或者是小清新的……根据这个模型算出有多少受众喜欢这类电影,还可以把演员确定一下,喜欢这个角色的演员一二三排一个名,第一名太贵请不起可以请第二名。所有的模型得出相应的结果,这就是我们看重的预测。”
国内大数据在哪个领域应用最多?答案是,互联网金融
对于数据的分析,不同领域可以有不同的服务,不同的方法,医药、交通、金融、零售领域居多。而互联网金融应用的是最多的。
“很多P2P机构都提到10分钟的信贷(10分钟申请,10分钟放贷),实际上就是运用后台的金融大数据平台。”华创资本董事总经理曹映雪说。“金融数据云平台,它做到的就是充分的利用申请者,不光是他传统的银行挖掘到的收入和线下的数据,它还利用爬虫手段和授权,通过申请者线上交易的支付宝信息、银行信用卡账单,迅速集成,通过自身建立的模型给借款者进行信用打分。这一点就要求具有快速处理信息能力,以及对个体信用评估模型,大数据模型的定价,各方面指标的这些确定。”
大数据虽然由来已久,但仍被认为是蓝海,那么哪些领域最有创业和投资的机会?
“作为创业者来说,我个人感觉在数据存储领域可能跟芯片相关或者跟算法相关,因为数据存储是海量的,技术更新平台是非常快的,这块可能有一些机会。在数据应用领域,我可能针对具体的行业做一些应用,这块机会也比较多。”海银资本合伙人李东平说。
大数据前景广阔,“钱”景堪忧
DCM合伙人曾振宇阐述了投资人看到的大数据目前的现状是这样的:
“我们真正看这个市场的投资机会,可能是在应用层的一些机会。或许在应用层也没有什么机会。为什么呢?真正有大数据的公司数据也不会跟你共享,你有什么好分析的,我与其让你建一个公司分析我的数据,不如把你招进来和我一块工作算了,都是这样的态度。”
华创资本董事总经理曹映雪指出,大数据怎样能变现是业内普遍焦虑的问题。“从运用的角度,包括现在很多大数据说的数据变现问题,基本还是从应用场景上没有找到合适的模式。但在金融领域,金融大数据其实有相对比较好的场景。”他说。
“经常做大数据,不要觉得有一个爬虫技术就不得了,有这个技术的人太多了,关键是你把这个数据扒下来干什么用。”钜铖资本合伙人高云卓说。“利用手里的数据创造高价值,当你面对投资人时说我挖掘出什么东西,我会创造什么价值,也许你现在不赚钱,但只要这条路是对的,投资人一定愿意掏钱。”
对于投资者来说,他们愿意投资哪类大数据应用?“我们偏向应用多一些,如果在存储、算法上有一些特色,能和硬件业务有很好连接的东西,我们也会对基础设施这块有一些投资。”乐基金成都负责人李志说。
与大数据相关的哪些行业值得挖掘?晨创投西南分公司首席代表窦勇认为,“金融可能太大,而且BAT在营销方面已经占了大头,不见得还有机会。”窦勇表示,针对一些垂直领域比如做一些APP,针对区域里边的数据资源做嫁接、挖掘可能会有出路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31