作战大数据建设的困境与出路_数据分析师
编者按:当前,军事强国借助大数据争夺信息制高点的战略正在全面升级。面对日新月异的信息技术变革潮流,迎接打赢信息化战争的挑战,我们必须反思如何善用数据说话,如何立足实际培育信息文化,在破解作战数据建设的重重困境中,努力探寻大数据融入军事实践的途径。
大数据建设困境主要源于信息系统三大支柱发展不平衡
计算机硬件、作战软件和作战数据并称为指挥信息系统的三大支柱,作战数据流是指挥信息系统的“血液”,它将计算机硬件和作战软件有机连接在一起。近年来,我军指挥信息系统的硬件和软件建设获得快速发展,但作战数据建设在一些部队却始终在较低层次徘徊,已成为基于信息系统体系作战能力提升的瓶颈。这种困境的形成有着深层原因:
指挥信息系统三大支柱建设的涉及面不同。由于所需技术和材料的原因,计算机硬件建设往往只是少数机构和专家的“专利”,涉及面最小。作战软件虽然需要紧密结合部队实际,但一般经部分使用单位试用完善后即可配发全军,其建设过程涉及面不大。而作战数据建设不仅涉及战略性作战行动至单兵作战行动的全部领域,且不同军兵种、不同层次的作战单位所产生的数据差异很大,具有强烈的不可替代性。甚至同一部队在相同作战环境下采用相同的战法与相同作战对手多次对抗,其产生的数据也不会完全相同,为确定具有代表性的范本数据值,上述重复性对抗必须多次进行。为了准确收集各级各类海量作战数据,其涉及面程度之广可想而知,这使作战数据建设成为一项极为庞大的系统工程。
指挥信息系统三大支柱建设的客观条件不同。计算机硬件的军民通用性极强,且极少涉及保密问题,“拿来主义”使其容易与国外先进技术同步发展,因此发展最为迅速。作战软件仅在部分核心功能上涉及保密问题,但整体架构可实现技术军民通用。在军民融合式发展浪潮中,甚至可以将非涉密部分外包,而军内仅需自主研发少部分涉密的核心功能,因此也获得较好发展。但作战数据无论在任何国家均是重大军事机密,作战数据的需求论证、采集方法、处理程序及利用模式等众多环节,都不可能借鉴国外,甚至国内成功企业的先进做法也由于涉及核心商业秘密而难以窥其全貌。受客观条件所限,作战数据建设“主要靠自己摸索”的模式很难被打破。
指挥信息系统三大支柱建设受重视程度不同。计算机硬件性能具有明显的可比性,孰优孰劣一目了然,一旦取得成绩则可名扬四海,无形中激励出“领先世界”的努力。至于因某些功能的超常提升而对其他性能和使用寿命带来的负面影响,则少有人问津。作战软件的优劣虽然不具有明显的可比性,但其运行在指挥信息系统前台,最易被人感知,故也可获得较高的重视。而作战数据始终默默无闻地在指挥信息系统的后台运行,其建设成效目前也无明确的评判标准,易被人忽视。但指挥信息系统的核心功能是精确决策,精确决策必须基于准确全面的作战数据,上述重视程度的显著差异将导致指挥信息系统的核心功能极大弱化。
指挥信息系统三大支柱建设的管理体制不同。一般而言,部队仅是软硬件系统的使用者,软硬件系统的具体生产过程由相关科研部门负责,这种关系简单,易于管理,建设效益高。但部队既是作战数据的使用者,又是作战数据的生产者,只是限于条件,部队很难对作战数据做到自产自用。而且信息化战场上几乎所有级别的作战部队都有数据共享的需求,如果只进行一对一的数据交换,将使数据管理陷入极其盲目和混乱的局面。这种复杂关系在缺少明确主管部门和科学管理体制情况下面临多种困境。作战数据采集难、验证难、查询难、共享难问题长期未能得到有效解决。
多手段破解作战大数据建设的现实瓶颈
在发达国家军事组织纷纷推行大数据战略背景下,我们应清醒意识到“数据制胜”的信息化战争发展趋势,更应立足我军实际,正视数据浪费与数据缺乏的矛盾已严重制约基于信息系统的体系作战能力,探寻破解作战数据建设困境的途径。
健全管理机构,在顶层统一筹划作战数据跨领域联合建设。为解决大数据多领域联合建设问题,美军规定,指挥信息系统的规划、开发、使用与管理全部由首席信息官办公室集中负责。美军不仅在国防部实施首席信息官制度,而且在军种部队和战区也建立了该项制度。这种集中统一的管理方式可以有效破解硬件、软件和数据建设相互割裂的弊端,确保三者相对协调一致地发展。客观地讲,健全定位准确、责任明确的管理机构,是实现作战数据建设良性发展的组织保证。根据我军指挥体制的实际,应依托现行军事训练和信息化管理体制,自上而下地设置跨部门、跨军兵种的作战数据建设管理部门和作战数据军官,建立全军统一的作战数据建设制度体系,破解作战数据建设长期没有明确主管部门的弊端。
推行数据化训练,使作战数据建设植根于最广泛的实践之中。数据化训练是指在军事训练中以生成、采集、处理和利用作战数据为途径,揭示信息化战争深层规律,并用以指导信息化战争实践的训练模式,其根本目的是提高基于信息系统的体系作战能力。训练过程数据化,在以基地实兵对抗演习为主的部队训练全过程,开展分工明确的作战数据采集工作。军事训练是作战数据生成的最丰富土壤,也是获得接近实战数据的最佳环境。切实推行训练过程数据化,才能从根本上解决作战数据缺乏的困境。指挥训练数据化,利用先进成熟的数据挖掘和人工智能技术,开发符合我军作战数据标准并具备一定自主决策功能的指挥训练系统,促使“以经验为中心”的决策方式向“以数据为中心”转变。训练手段数据化,基于实兵对抗演习数据,进一步完善和开发以训练软件和兵棋系统为代表的各级各类训练模拟器材,努力提高部队信息化训练水平。
建立实验部队,使其成为以数据为中心的前沿阵地和示范基地。在大数据引领信息化战争发展方向的今天,我们不可能永远将作战数据定位于保障层次。考虑到我军实际,虽然当务之急是提高各军兵种部队的整体数据化水平,但还应适情建立少量实验部队,使其成为作战数据建设跨越式发展的前沿阵地,努力探索以数据为中心的新技术、新装备和新战法,为未来我军向大数据战略过渡预留接口。事实上,实验部队建设是未来作战方式变革的“试金石”。我军如果不走开这条路子,可能将始终处于追赶先进的被动境地。
培养专业人才,从根源上突破作战数据建设面临的重重困境。作战数据专业人才培养涉及军事学、统计学、计算机科学与技术、管理学和系统科学等多学科多专业的交叉融合。由于我军院校建设规模和学科设置等原因,作战数据建设专业人才培养的供需矛盾十分突出。为解决专业人才的巨大缺口,首先应向地方拓展人才培养渠道,创建军民融合的作战数据人才联合培养机制。可借鉴地方先进企业在数据管理领域的成功经验,成立数据管理实践基地,或委托地方高校及科研院所招收相关专业国防生、进行在职军官培训。转变人才选拔模式,推行作战数据工程师资格认证制度。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28