大数据能否拯救保险业数据“干涸” _数据分析师
商业车险新费率改革下月起将在6试点省市全面实行,然而最新数据显示,目前经营车险业务的中外资企业绝大部分仍处于全线亏损的状态。对此,业内人士认为,数据分析等基础工作没有到位仍是造成险种亏损、制约费改的重要因素,如何整合数据资源、实现信息共享、利用大数据进行产品和渠道的创新是保险业把握跨越式发展机遇的关键一步。
信息壁垒阻滞创新
据了解,目前保险行业基础数据积累比较薄弱,已经影响到保险业产品设计、定价、营销、理赔以及行业监管等各环节的创新发展。而目前保险业无力整合业内外信息数据资源实现信息数据共享,信息数据管理和分析处理能力不足等问题又加剧了保险业数据的干涸程度。
中国保险行业协会会长朱进元表示,新“国十条”提出要大力发展责任险,但是产品的设计离不开对信息数据的掌握和分析:“比如医疗责任险,每年有多少案例,其中千分之几出现这样的问题,大约需要赔付多少,这就是保险产品的基础数据,但这些都掌握在医院手里,保险公司没有这个数据。”
一位保险业内人士则表示,一些地方的卫生和人社部门不让商业保险公司用信息平台:“在一些地方,商业保险公司承接政策性医保项目不赚钱甚至亏损,但之所以这么做,就是为了掌握居民医疗信息。”
不仅如此,保险行业内也存在信息数据不共享的问题。“保监会有几十亿条数据躺着睡觉没有利用起来。”北京大学风险管理与保险学系主任郑伟表示,虽然目前保险业做了年度信息披露报告,解决了外部获取保险业信息的问题,但是总体来看还是披露的太少。
利益分割造成数据割据
对于信息数据割据的原因,有保险人士认为,这实际是利益分割的结果。行业外的部门把保险业当队友还是对手,决定了他们是否会向保险行业开放数据共享。
“很多医疗部门、社保部门把我们当竞争对手,其实他们解决层次低的问题,我们提供中高端保障,实际上是互补的,都会对社会稳定发挥作用,但是基础数据他们一直在做,我们相用,壁垒很高。”上述人士表示,以医责险为例,如果对它的效果有共识,则会促进相关数据的公开。
值得注意的是,信息安全也是决定一些数据是否适合公开的重要考量。保监会副主席王祖继表示,现在来自各方面的海量数据让数据处理的软硬环境更加复杂敏感,更容易成为攻击目标。防范信息安全风险已经成为大数据时代的重要课题。
数据共享需制度保障
业内人士建议,应推动各部门向保险行业开放相关数据信息平台,实现互利共享。同时尽快通过完善法律法规来营造有法律约束的,安全的数据开放和共享环境。同时,保险行业也应提升积累、分析和利用数据信息的能力。
朱进元认为,保险业想要在大数据时代有所作为,数据积累是一项基础工程。“应重塑保险业在国民经济发展中的地位,鼓励各部门用开放的心态对待保险业。”他表示,以农业保险为例,好的数据积累,对于提升农业保险的数据准确度、增强费率定价能力、提高农业保险保障水平至关重要。
“下一步要推动形成一个巨大的信息网络,在这个系统之内大家可以自由地流通信息。”保监会主席项俊波说,只有得到各部门的支持,通过建立平台实现信息共享,才能有效降低承保过程中出现的跨险种、跨机构、跨领域风险,实现监管环节的现代化。另一方面,要尽快建立和完善相关法律,让信息数据公开有法可依。保监会财产保险监管部主任刘峰建议,我国可借鉴美国的《信息公开法》,要求政府部门形成的数据,除非保密需要,都应充分向社会公开。王祖继认为,行业监管部门要监督保险机构严格遵守信息化主管部门制定的规章制度,进一步完善行业信息化治理,强化责任落实,加强信息安全培训,提升信息安全技术,完善信息安全预警和响应机制,进一步健全与大数据时代相适应的信息安全保障体系。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28