大数据激发移动支付新活力_数据分析师培训
近日,备受业界关注的2015第七届中国移动支付产业论坛在北京开幕。这场围绕“大数据开启移动支付新时代”展开的深度探讨,吸引了移动支付全产业链的400多位行业精英参与,共议大数据背景下移动支付产业的创新变革。
移动支付迎来起飞期
来自人民银行的数据显示,2014年全国共发生移动支付业务45.24亿笔,金额达22.59万亿元,分别同比增长170.25%和134.3%。艾瑞数据也显示,移动电子商务交易规模达到1676.4亿元,同比增长165.4%。移动支付顺应社会发展需求,提供便捷的支付服务,已是大势所趋。从NFC近场支付、传统远程支付、二维码支付、声波支付、BLE蓝牙支付,到外接刷卡器,移动支付产品也呈现出多元化发展态势。
除了传统支付向移动支付过渡、产品日益多元化外,中国人民银行软件开发中心移动金融事业部总经理朱杰表示,目前移动支付可信生态圈格局已初步形成,包括:银行主导的手机银行
NFC移动支付生态圈;第三方支付机构主导的电商、社交圈支付生态圈;运营商主导的依托线下ATM、POS,以及与银联合作的NFC移动支付生态圈。同时,单一支付应用向多元化移动应用发展,包括线上(电子商务、手机缴费、基于LBS的支付服务等)、线下(公交、餐饮、零售、电子现金等)场景融合。
目前,移动支付的概念已外延到移动金融、互联网金融领域,而为推动产业健康发展,今年1月人民银行印发了《关于推动移动金融技术创新健康发展的指导意见》,明确了移动金融创新健康发展的方向性原则和保障措施。
朱杰在大会上指出了目前人民银行移动金融工作方向:从移动金融线上线下业务一体化发展的角度找准移动金融应用突破口,探索“基于智能安全芯片、符合标准、线上线下协同发展”移动金融创新产品、合作模式、商业规则,加快市场培育和产业成熟,扩大应用领域。同时,人民银行从2011年起,先后开展标准规范建设、生态圈建立、试点推广工作、检测认证体系等,并在今年发起成立移动金融产业联盟。
运营商的大数据与支付实践
对于互联网金融,其一大特点便是大数据作用突出。企业可以充分利用互联网技术和数据信息积累与发掘的优势,同时互联网金融生态圈客户群规模大,企业甄选客户对象成本降低。作为移动支付主导阵营之一,国内三大运营商已各自布局支付领域,并在大数据基础上进行整合。
中国电信翼支付公司副总经理罗来峰表示,以支付业务切入,后向积累用户,前向拓展商户,叠加高价值金融服务的翼支付,现在已跻身国际国内金融行业“1亿账户用户俱乐部”,并以翼支付为基础,基于大数据开拓征信、小贷、财富管理、消费金融等服务。例如中国电信针对个人用户推出“橙信分”,便是在充分整合中国电信集团通信数据、支付数据及第三方数据的基础上,从历史信用、账户等级、还贷能力、行为偏好、社交关系5个维度,运用多种技术方式呈现出个人用户的信用状况。
中移电子商务公司作为中国移动旗下惟一支付机构,也在探索SIM卡和大数据整合服务业务,并以期在未来朝以下5个方向发展:经营分析,应用于移动本身各项业务的经营分析,降低经营风险;O2O广告,基于用户消费习惯、位置信息、时间信息提供广告服务;精准服务,根据用户消费行为、喜好,提供准确的售后服务;金融征信,根据BOSS消费记录、和包消费记录,结合银行征信记录,为客户提供征信服务;防灾应对,根据人群密度分析,为政府、企业提供防灾、救灾服务。中国移动中移电子商务公司总经理助理游峰表示,随着互联网金融的蓬勃发展,以大数据作为基础,运营商与各行各业在未来的结合上想象空间是非常大的。
中国联通沃支付产品部总经理狄亚表示,中国联通已与某金融机构合作,在互联网金融领域进行探索,通过整合联通和某金融机构的大数据资源,实现对金融消费的“风控”、精准市场营销等业务。
安全问题备受关注
实际上,在移动支付产业不断向前发展的过程中,也出现了一些问题,如之前的二维码支付暂停事件、某电商交易敏感数据泄露事件、恶意程序窃取敏感信息等,关于移动支付的安全问题备受关注。同时在新的发展形势和要求下,开放应用场景迫切需要新的信息安全解决方案。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21