大数据企业应该避免的几大错误_数据分析师考试
如果企业改变它对大数据的想法,大数据会改变企业的思路。这听起来有些像禅宗心印 (Zen Koan)。不过,这是获得突破性见解的关键:你的眼光必须超越思想的限制,思考和询问你希望从拥有的数据中得到什么。
尽管如此,许多机构出人意料地没有把这种新的思想应用到自己的大数据计划中,结果导致严重的计划失败。
错误的想法,也就是“大数据的错误”,有三个主要方面。如果不解决这些错误想法,这些错误将直接导致一些欠考虑的计划,不能提供有意义的商业价值。
由于害怕失去机会,许多机构仓促地实施大数据基础设施项目,以避免落后。麻省理工学院《史隆管理评论》(MIT Sloan Management Review)发表的一篇调查报告指出,大数据的迅速流行导致一些大型企业的执行委员会向管理人员发出如下指令:“我们不知道大数据是什么,但是,我们最好立即解决大数据的问题。”
这种下意识的反应已经导致出现一些无法实现的计划,如盲目地建造Hadoop(分布式计算)集群,含糊的目标是用12至24个月的时间,没有考虑如何帮助提高收入、节省成本或者提高竞争力的实际应用案例。这种仓促的决定显然会使大数据计划失败。
本文作者Attivio公司产品营销主管Mike Urbonas的同事Randy McLaughlin最近发现“大数据”这个词汇有许多竞争的定义,这些定义限制了这个词汇的实用性。例如,早些时候的定义让“大”等于“量”。这个定义是不完善的,并且仍然在坚持。许多人仍然错误地认为大数据是Hadoop的同义词。
这是一个问题,因为把重点放在量的方面将导致大错误。这是《哈佛商业评论》最近发表的一篇题为“更大的数据会导致更好的决策吗?”的博客文章提出的警告。这篇文章的作者引述长期的研究结果称,决策者经常为了提升自我或者证明现有的想法而有选择地使用和解释信息。仅仅增加数据量不会对目前常规的企业想法构成挑战。
这也许是许多企业设法利用庞大的数据量,只有少数企业真正取得成功的原因。这个问题的解决方案不是重新制定一个决策过程,而是重新制定一个机构的战略,不是把量作为主要技术重点,而是把管理多样性作为重点!
《哈佛商业评论》那篇文章的作者还指出,“大量”实际上过时了;金融服务公司几十年以来一直有大量的数据。目前真正新的东西是信息资源的多样性。这些资源将产生新的商业见识。
这篇文章指出,多样性的商业团队比单一的商业团队更有创造力;多种数据合并在一起会产生同样的好处。因此,我们不能说数量大的数据会导致更好的决策,而是把使用新技术、处理过程和技能的许多点连接起来的多样性的数据会导致更好的决策。通过一个统一信息接入平台,这些点的连接会迅速完成。
设想一下,把相关的和分析交易数据库与客户在社交媒体、网站、电子邮件、即时消息聊天和呼叫中心记录等地方发表的喜欢或不喜欢的意见组合在一起,其结果是一个对客户解决方案的真正的全方位的看法。这个客户解决方案提供新的可执行的见解,在最大限度提升客户服务、忠诚度以及成功的追加销售和交叉销售的同时减少客户流失。这是大数据多样性的业务转型的力量。
重要的是需要指出,越来越多的证据表明,开始获得真正的改变游戏规则的回报的机构认识到,这是通过管理多样化的信息实现的。例如,上述大数据调查报告指出,受访的大企业都谈到管理各种数据和集成多种来源的信息。这是企业使用大数据的重点。这包括使用非结构化数据。
因此,如果你的机构还没有探索把管理多样性数据作为大数据商业价值的主要推动因素和技术重点,你的机构现在要在竞争对手采取行动之前把这个工作摆正优先的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31