大数据时代自学考试数据管理_数据分析师考试
自学考试是我国高等教育的重要组成部分。随着大数据时代的到来,高等教育自学考试要向更高层次发展,就必须积极引进网络和多媒体技术,实现大量数据的采集、统计、计算、分析等方面的工作,实现高效、规范、科学的管理流程,推动自学考试改革创新、持续健康地发展。
提升教学技术。大数据促进自学考试教育创新。现代教学评价正在从终结性评价向过程性评价过渡,增强了过程性考核的诊断功能。加强自考生学习过程的考核是自学考试改革的一个组成部分。学习全过程的量化考核成绩可分为考生考试成绩和学习行为素质表现量化考核成绩。吉林省已经启动自学考试“网络学习综合评价”(以下简称“综合评价”)系统,为考生提供更加优质和便捷的学习辅导,对于考生的综合评价,主要包括网上课程学习30%(课件学习时长及知识点测评)、网上阶段测评40%、网上综合测评20%及平时的学习表现10%四部分,系统给出这门课程的综合评价成绩。通过参加“网络学习综合评价”,考生可以对课程知识点进行全面、系统的梳理,较好地把握课程重点和难点知识,提高自己学习的能力,有效提高课程理论考试成绩。通过数据统计,2014年吉林省自学考试有7000多人参加“网络学习综合评价”,其中绝大多数考生综合评价成绩在八九十分。实行过程考核和国家统一考试相结合的学业综合评价办法,无疑会使自学考试考评体系对人才的评价更加全面和科学,而自学考试大数据为其提供了坚实的基础。
推进改革创新。通过精确跟踪自学考试报名考试数据和在线课堂等学习平台上获取的数据,对考生学习轨迹的移动进行更准确、广泛的比较研究。深入了解考生来源、层次分布、专业需求以及在学习活动中的接收效果,及时有效整合教育资源和调整教学内容。以吉林省2014年下半年自学考试报考数据为例,通过报考数据还可以统计分析出各专业报考情况及各科目报考情况;社会考生、二学历考生、高职高专考生分布情况等等。此外,还可以把报考数据进行横向比较,获取报考人数的变化、报考科次的变化以及新生报考人数、报考科次及报考专业的变化等等,做到纵向到底、横向到边、全方位的统计分析。从报考数据我们可以统计出缺考人次、违纪人次、及格率(总及格率、实考及格率、各科目及格率)、各科目分数段,甚至各题的得分情况等等。通过对报考数据进行科学的分析研究,对教学效果进行量化的描述,为选择和修正考试方法和考试内容提供科学的根据和指导。
虽然大数据拥有巨大的发展潜力,但是数据的安全性、隐私性、数据的可得性以及可用性问题,日益受到人们的关注。越来越多的人开始收集相关数据,他们是否会故意透露这些数据或通过社交媒体张贴,甚至在不知不觉中公布了一些具体的数字细节,从而泄露他人隐私,影响人们的正常生活。所以,自学考试数据信息的安全保密工作就显得尤为重要。
分析自学考试巨大的数据集会使人们产生虚假的信心,导致做出不合理甚至错误的决定。此外,这些数据被别有用心的人或机构滥用,以达到他们想要的结果,这些问题在一定程度上阻碍了自学考试的健康发展。
目前,自学考试数据管理亟需解决的问题是:
数据管理各自为战,不成体系。在传统的数据管理模式下,考试管理机构内部存在着详细的人员分工,有的管理新生注册数据,有的负责报考数据,有的管理毕业数据。各部门之间数据格式不一样,影响自学考试工作正常进行。随着自学考试的发展,资源利用率低、数据冗余等问题出现。因此,大数据时代自学考试数据管理需要更新思路。
随着大数据时代的到来,自学考试数据的管理应从三个层面展开:
第一层面是理论。从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。同时,需要走出目前认识上的误区,即大不等于多,大数据时代应该更加强调数据的有效性。
第二层面是技术。自学考试应根据大数据的发展趋势,尽快开发设计出合理的、实用的计算机数据处理应用程序,使自学考试数据管理工作走上信息化和程序化的轨道。
第三层面是实践。建立新的自学考试管理系统,实现计算机对自学考试各个环节的全面管理,包括建立健全各类数据电子信息定期收集整理制度、利用数据库管理系统对数据进行集中管理和发布、配备数据管理员,实现有效管理。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21