大数据时代自学考试数据管理_数据分析师考试
自学考试是我国高等教育的重要组成部分。随着大数据时代的到来,高等教育自学考试要向更高层次发展,就必须积极引进网络和多媒体技术,实现大量数据的采集、统计、计算、分析等方面的工作,实现高效、规范、科学的管理流程,推动自学考试改革创新、持续健康地发展。
提升教学技术。大数据促进自学考试教育创新。现代教学评价正在从终结性评价向过程性评价过渡,增强了过程性考核的诊断功能。加强自考生学习过程的考核是自学考试改革的一个组成部分。学习全过程的量化考核成绩可分为考生考试成绩和学习行为素质表现量化考核成绩。吉林省已经启动自学考试“网络学习综合评价”(以下简称“综合评价”)系统,为考生提供更加优质和便捷的学习辅导,对于考生的综合评价,主要包括网上课程学习30%(课件学习时长及知识点测评)、网上阶段测评40%、网上综合测评20%及平时的学习表现10%四部分,系统给出这门课程的综合评价成绩。通过参加“网络学习综合评价”,考生可以对课程知识点进行全面、系统的梳理,较好地把握课程重点和难点知识,提高自己学习的能力,有效提高课程理论考试成绩。通过数据统计,2014年吉林省自学考试有7000多人参加“网络学习综合评价”,其中绝大多数考生综合评价成绩在八九十分。实行过程考核和国家统一考试相结合的学业综合评价办法,无疑会使自学考试考评体系对人才的评价更加全面和科学,而自学考试大数据为其提供了坚实的基础。
推进改革创新。通过精确跟踪自学考试报名考试数据和在线课堂等学习平台上获取的数据,对考生学习轨迹的移动进行更准确、广泛的比较研究。深入了解考生来源、层次分布、专业需求以及在学习活动中的接收效果,及时有效整合教育资源和调整教学内容。以吉林省2014年下半年自学考试报考数据为例,通过报考数据还可以统计分析出各专业报考情况及各科目报考情况;社会考生、二学历考生、高职高专考生分布情况等等。此外,还可以把报考数据进行横向比较,获取报考人数的变化、报考科次的变化以及新生报考人数、报考科次及报考专业的变化等等,做到纵向到底、横向到边、全方位的统计分析。从报考数据我们可以统计出缺考人次、违纪人次、及格率(总及格率、实考及格率、各科目及格率)、各科目分数段,甚至各题的得分情况等等。通过对报考数据进行科学的分析研究,对教学效果进行量化的描述,为选择和修正考试方法和考试内容提供科学的根据和指导。
虽然大数据拥有巨大的发展潜力,但是数据的安全性、隐私性、数据的可得性以及可用性问题,日益受到人们的关注。越来越多的人开始收集相关数据,他们是否会故意透露这些数据或通过社交媒体张贴,甚至在不知不觉中公布了一些具体的数字细节,从而泄露他人隐私,影响人们的正常生活。所以,自学考试数据信息的安全保密工作就显得尤为重要。
分析自学考试巨大的数据集会使人们产生虚假的信心,导致做出不合理甚至错误的决定。此外,这些数据被别有用心的人或机构滥用,以达到他们想要的结果,这些问题在一定程度上阻碍了自学考试的健康发展。
目前,自学考试数据管理亟需解决的问题是:
数据管理各自为战,不成体系。在传统的数据管理模式下,考试管理机构内部存在着详细的人员分工,有的管理新生注册数据,有的负责报考数据,有的管理毕业数据。各部门之间数据格式不一样,影响自学考试工作正常进行。随着自学考试的发展,资源利用率低、数据冗余等问题出现。因此,大数据时代自学考试数据管理需要更新思路。
随着大数据时代的到来,自学考试数据的管理应从三个层面展开:
第一层面是理论。从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。同时,需要走出目前认识上的误区,即大不等于多,大数据时代应该更加强调数据的有效性。
第二层面是技术。自学考试应根据大数据的发展趋势,尽快开发设计出合理的、实用的计算机数据处理应用程序,使自学考试数据管理工作走上信息化和程序化的轨道。
第三层面是实践。建立新的自学考试管理系统,实现计算机对自学考试各个环节的全面管理,包括建立健全各类数据电子信息定期收集整理制度、利用数据库管理系统对数据进行集中管理和发布、配备数据管理员,实现有效管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31