重构大数据:探索健康险 “治未病”新模式
5月以来,一系列国家大力支持商业健康险发展的政策频现。作为深化医药卫生体制改革、发展健康服务业、促进经济提质增效升级的“生力军”,商业健康保险发展已势如破竹。随着互联网和大数据时代的到来,特别是在“数字人生”和“数字医疗”的大背景下,健康险和寿险经营的基础环境也将发生根本性的变化,因此在机遇和挑战面前,“重构数据增强险企创新核心竞争力”、“依靠大数据运行提高效率和服务水平”、“探索"治未病"新模式”等成为业内共识。
数据积累不足——
掣肘商业健康险发展
随着中国人慢性病、重病发病率的增加,很多家庭为支付医疗费用承受巨大经济压力。在全民健康保障体系中,商业健康保险不仅弥补了基本医疗保障范围的不足,还可满足不同收入人群、不同职业人群、不同风险人群多样化、多层次的医疗保障需要。
近年来,我国商业健康保险发展成绩显著。2014年,我国商业健康保险保费收入1587亿元,同比增长高达41%。截至目前,保险行业已经推出商业健康保险产品2300多个,健康保险的服务功能也从基本医疗费用补偿,向预防、治疗、康复为一体的综合性健康管理转变。
“但是,目前我国商业健康保险产品的创新能力不足,风险管理能力也有待提高。与此同时,受制于商业健康保险风险覆盖范围相对狭窄、保障方式相对单一、经营成本偏高等因素,多数保险公司的健康险业务经营处于亏损状态。”谈及我国商业健康保险的发展现状,中国保险学会会长姚庆海表示,商业健康险的经营主体在医疗健康管理产业链中能动性低,专业化的健康管理服务水平还有待提高。保险机构不仅难以共享公立医疗机构的诊疗信息,而且难以深入介入和参与人们的疾病诊疗与健康管理流程。健康保险数据平台不够健全且缺少数据积累,也要求商业健康保险对互联网、大数据、基因工程等科技的整合能力进一步加强。
重构大数据——
险企创新核心竞争力
“实际上,购买健康险客户的根本诉求并不是要得到保险赔偿,保险公司应当在客户健康管理方面下工夫,让客户真实地感受到保险公司提供的不仅仅是保障承诺,更重要的是基于专业管理的个性化健康状态维护,可以提供从家庭、社区以及医院包括养老院和康复中心的全方位平台解决方案。”有保险专家对记者表示,保险业应该通过健康保险这一平台,集合并成为广大被保险人的“利益代理人”,利用大数据、物联网、基因工程和人工智能等前沿科技,形成一种倒逼机制,推动我国卫生和医疗体制改革,同时利用这些技术,探索全新的保险商业和服务模式。
当前,在“互联网+商业健康保险”的发展模式下,移动互联、大数据、可穿戴设备、便携式检测设备等领域的新进展,都将推动对健康风险的事前预防、实时监控、实时响应和快速服务,商业健康保险的运行效率和服务水平有望得到革命性的提升。
因此,解构和重构数据将成为未来保险公司创新的核心能力。这不仅需要保险公司建立跨学科的“科学团队”跟踪和研究新技术和新领域,尤其需要捕捉前沿领域的技术,并根据业务发展和提高效率的需要,构建全新的商业模式。
运用大数据——
“治未病”不再遥远
《黄帝内经》中有句话:“圣人不治已病治未病”。对于保险业而言,从业务发展的角度看,需要将“治未病”作为经营重点,为客户提供高水平的健康管理服务。从自身经营的角度看,应当思考行业发展的“治未病”问题,未雨绸缪,探索新模式。
应该说,大数据分析在保障产品设计及精算定价、理赔运营管理、医疗机构管理、市场和销售拓展等医疗保险经营的各个领域均有很大应用价值。日前新华保险(行情62.4 +1.58%,咨询)发布的2014年理赔数据报告,就用“数据事实”,深入剖析了客户理赔及疾病健康发生趋势,为客户提供了一份清晰的“治未病”蓝图。
数据显示,2014年新华保险个险理赔累计给付26.49亿元,较2013年增长19.16%。其中重疾和特种疾病的增幅最为显著,分别为29.55%和166.98%。从理赔身故类数据看,占比前三位分别为恶性肿瘤、意外事故、心脑血管疾病。而在恶性肿瘤赔付种类中,乳腺恶性肿瘤的赔付占比最高,为17.67%;其次是甲状腺恶性肿瘤14.72%;再次是支气管和肺部恶性肿瘤11.43%。从重疾赔付金额看,61.40%的重疾保额在0-5万元,占比最高,仅1.69%客户重疾保额高于15万元。从赔付年龄看,40-49岁客户重疾赔付占比最大,为40.52%,出险客户中年龄在30-59岁的占比达86.93%,该年龄客户是家庭经济收入来源的主力。
站在理赔角度,新华保险数据分析专家给出健康险投保建议:
一要首选重疾。因重疾呈现年轻化趋势,且年龄小费率低,健康状况好,易标准承保,因此宜尽早投保。
二要必备意外。在身故赔付中,意外事故占比15.95%,因此在计划保险保障时,务必配备意外险,尤其是风险较高的男性。
三要保额充足。从理赔数据看,大多数客户的身故/重疾保额在10万元以下,保障功能体现不明显,建议重新检视自己的保单,通过产品组合的方式,提升保障额度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04