Big Data大数据重塑营销2_数据分析师
大数据难题:超越技术
当然,从大数据的定义中就可以看出来,大数据营销首先面临的是技术难题。但实际情况是,真正启动大数据营销,你面临的不仅仅是技术和工具问题,更重要的是要转变组织架构和思维,来真正地挖掘那座数据金矿。
1.确定你的目标和标准。
把大数据这个概念扔掉,而是非常专注在你的衡量标准上。你必须弄清楚你到底想从大数据中得到什么,否则你就要花费大量的时间来分析数据。你需要的是,能够帮助解决问题的行为洞察,而不是试图研究每一个能够得到的信息。比如:分析你的消费者线上分享趋势,对你的业务有帮助吗?你的品牌体积是最重要的参数吗?
再强调一遍,大数据的资源太丰富,如果你没有明确的目标,你就算没有走入迷途至少会觉得非常迷茫。因此,首先,要定义你的价值数据标准,之后再使用那些能够解决特定领域问题的工具。
——Tim Devane,技术公司Bit.ly业务发展和销售总监
2.建设技术人才。
拥抱大数据之前,首先团队要到位。分析技能非常重要。你的营销团队要能够非常自如地玩转数据。很多人认为社交媒体营销人是个十分有趣的工作,其实只是个艰苦的工作。它非常注重数据、衡量标准和数据可视化等问题。要成功,首先要确保你的员工已经接受过技能培训,了解如何最大化利用大数据的潜力。当然回报也是非常丰厚的。
——Perry Drake,纽约大学助理教授
第一步是要将原先创意人员和统计人员之间的藩篱打破,让他们以同样的节奏,就同一个问题一起合作,融合为一支队伍,彼此学习。然而,研究公司Gartner曾经提到过,使用大数据的必备能力,是和那些信息技术行业中所需要的能力不同的,它更偏重框架的整合能力、提出正确问题和让公司所有部分一起工作的能力。很明显,你既需要统计人员,也需要创意人员,大数据是他们共有的天地。
——Marshall Sponder,Social Media Analytics:Effective Tools for Building,Interpreting,and Using Metrics一书作者
3.解决碎片化问题。
企业启动大数据营销一个最重要的挑战,是数据的碎片化。许多公司组织中,数据都散落在互不连通的数据库中,而且相应的数据技术也都存在于不同部门中,如何将这些数据库打通,并且实现技术共享,才是能够最大化大数据价值的关键。
——Graham Oakes,技术咨询师、博客作者
4.展现你的价值。
你只有能过展示数据带来的价值你才能够得到资源。营销者需要利用衡量标准来建立他们的可信度。没有这个,营销将会被看做一个花钱中心——但是当CMO们可以利用分析来将营销动作和硬性标准如年利润联系起来,他们就能建立自己的威信和赢得尊重,并在预算中占得一席之地。
——Jon Miller,金融服务公司Marketo营销副总裁
大数据,我们能做些什么?
大数据在国内的热度,仅从一个月内数场大数据主题会议举办的热度就可见一斑。
正如前文所述,数据分析能力的提升给营销带来的前景十分诱人;但同时反应出的是,数据以及如何利用数据一直都是营销圈中共同的难题,尤其在数字媒体兴起之后。
首先面临的是效果衡量标准,即使对于2011年宣布全面转向社交媒体的宝洁,这依然是个问题,“(社交媒体)效果现在无法确切衡量,投入必然会谨慎”,宝洁大中华区品牌运营副总裁靖捷告诉《成功营销》记者。浩腾媒体数据总监贾雯也表示“之前的数字营销效果更多的是数字展示,而不是效果分析。”
媒体的整合、受众的精准也都有赖于数据处理能力的提升来得到更好的答案;而在这些之外,我们可能会发现如何利用数据不只是个技术问题,而是理念以及公司架构等“软性”层面的问题,“国内和国外差距的不是技术,而是人,是对数据的重视程度”——从事数据挖掘20多年的支付宝首席商业智能官车品觉跟本记者分享其经验感悟。
我们从广告主、平台、代理机构等多方角色进行采访或者资料编辑,来了解和呈现不同视角中大数据的重要性和进展。广告主中,银行以及零售商一直是数据挖掘的先驱者,他们的动作对行业有着较大的借鉴价值;作为拥有巨大流量的平台,如何能够更好地提供其对于数据的洞见是其发挥流量优势的主要表现之一;而在业务和人才能力上与数据最为贴近的第三方机构,纵观他们产品和服务的水平几乎可以呈现国内大数据的整体进展。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21