(二)传统传播、互联网传播与智能传播的比较
我们可以从信息丰富程度、传播模式、信息公开度、及时性与互动性、商业模式等方面进行比较分析(参见表1)。
第一,在信息丰富程度方面。传统传播适应的时代为信息稀缺时代,在该时代信息相对稀缺,无论是报纸、杂志、广播还是电视,只要内容做得好,就能够吸引用户;互联网传播适应的时代为信息丰裕时代,在该时代信息相对丰富,以门户网站为代表的PC互联网媒体,单纯依靠内容已经难以赚取真金白银;智能传播适应的是信息过载时代,在该时代信息过多过滥,过载的信息带来极大的信息噪音,单纯的内容已经难以吸引用户,这就需要传播者提供针对每个用户的个性化、定制化的信息。
第二,在传播模式方面。传统传播是大众式的传播,即一点对多点、标准化的传播;互联网传播则是多点对多点、全立体的、链式的、病毒式的传播方式;智能传播则是多点对一点式的传播方式,即多个信息源来对应一个用户。
第三,在信息公开度方面。传统传播的信息公开度较低,是精英式的传播;互联网传播则信息公开度较高,实现了信息的高度公开和透明,也在很大程度上打破了信息的不对称性;智能传播则实现了传播者和用户两端的高度公开,实现了信息的对称和透明。
第四,在及时性与互动性方面。传统传播一般滞后于信息,及时性不够,互动性更为缺乏;互联网传播较好地解决了及时性,互动性也有了很大程度的改善;智能传播则在信息和用户两端都实现了及时性和互动性。
第五,在商业模式方面。传统媒体的商业模式为
表1
“二次销售”,即第一次通过发行把传媒产品售卖给用户,进而获得传播功能,第二次再把传播功能售卖给广告主;互联网的商业模式为“免费+收费”,即先通过免费的信息和服务来吸引巨量的用户,然后再通过增值业务向某些用户或者第三方收费;智能传播的商业模式则在互联网的商业模式上,进一步实现智能信息直接收费。
(三)智能传播的核心——基于大数据的智能信息匹配
在信息过载的情况下,存在着多就是少的悖论,即过多过滥的信息与能够满足用户的有效信息极度匮乏之间的矛盾。而要解决这个矛盾,真正满足用户个性化、定制化的信息需求,就必须通过数据挖掘和分析技术,打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。这就要求我们做好如下工作:
第一,打造巨型的云信息服务平台,在该平台上,云集着各式各样的信息,既有文字的,又有音频和视频的,并能实现信息的分类筛选、摘编和深度加工。
第二,打造大型的大数据平台,在该平台上能够通过数据挖掘和分析等方式,实现对读者和受众个性化需求的准确定位和把握。[1]
第三,能够通过技术手段低成本地在信息和受众个性化、定制化的需求之间实现智能化匹配,并能通过各种支付手段,实现智能化信息的收费。目前,一些巨型的信息平台已经形成,如Google、Facebook、亚马逊、百度、新浪、腾讯等,也出现了搜索、筛选、推荐等新技术手段。利用技术手段实现精准信息和读者需求的智能匹配进而实现信息的收费将仅是个时间问题。例如,亚马逊通过自己研发的被业界称之为“鬼打墙式的推荐”的精准推荐系统每秒卖出的商品达72.9件,这种精准推荐系统就是跟踪客户的所有消费习惯,不断进行优化。Google和百度利用搜索和筛选手段在一定程度上实现了读者的主动信息需求,而亚马逊等利用推荐手段也在一定程度上满足了读者的被动信息需求,而基于巨型平台的社会引擎将能够实现精准信息和读者需求的智能匹配。
目前,在国内,互联网三巨头BAT(百度、阿里、腾讯)已经在大数据和智能传播方面打下了坚实的基础,这也给其带来了丰厚的收入。例如,阿里巴巴围绕大数据打造出了巨型的信息系统,其广告收入从2012年的98.04亿元高速增长到2014年的297.29亿元。
(四)传媒业大数据实践误区
当前,传媒业虽然高度重视大数据,但是在大数据实践中仍存在多种误区。
第一,依然秉持“内容为王”理念。正如上文所述,智能传播的关键是智能信息匹配平台,单纯的内容已经难以为继,但是很多传统媒体依然单纯从内容上发力。[2]
第二,认为大数据仅仅是工具。很多传统媒体仅仅把大数据当成工具和手段,而没有把大数据当成传媒业的底层架构和标配,这必然导致其在发展大数据的过程中变形。
第三,误把数字化当成数据化。很多传统媒体认为,只要把之前的用户资料和内容资源从此前的纸质版转为数字版就实现了数据化,其实这仅仅是数据化的最浅层工作。
第四,误把新闻可视化当成数据化。很多传统媒体仅仅把数据化当成数据新闻或者可视化新闻,其实数据化是整个系统的数据化,单纯的数据新闻或者可视化新闻都远远解决不了实际问题。
四、智能传播的盈利模式
第一,信息服务收费。由于信息智能匹配能够给用户节省大量的时间,用户必然会对其收到的个性化、定制化信息服务付费,而可以预测,这一块将会有上千亿元的市场规模。
第二,广告。未来,基于大数据的广告能够实现精准投放,则这一块也会有很大的市场。
第三,电子商务。基于大数据的电子商务,将成为智能信息匹配平台的重要组成部分。
第四,舆情增值服务收入。媒体可以给政府、企业等各类组织提供基于大数据的舆情服务,进而获得收入。
第五,网络行政服务。智能传播平台能够为当地政府提供高效的、标准化的网络行政业务,其市场规模也会很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31