让数据发挥价值 金融保险需建数据生态体系
数据是保险业经营、管理和决策的重要基础,数据综合利用是近年来保险行业信息化建设的核心。保险业持续发展的数据业务建设提速,给保险行业运营中心对数据进行集中处理提出了更高的要求,这也成为保险公司发展规划中的重要内容。
大信息量亟需数据保护
据有关数据,近五年间,中国保险业信息化整体投资规模的年复合增长率大约为10.53%.目前,大部分的保险公司已经实现业务数据大集中,建立起各自的大后援。然而,在这片看上去宁静清新的风景后面,却有数百条繁忙的热线电话和一刻也不能停止的数据处理中心。如何充分利用数据大集中的成果,建立完善科学的保险数据体系,逐步强化数据挖掘和数据资产利用的能力,准确掌握保险市场需求变化,改善客户服务质量,推进保险创新发展,促进保险业增长方式转变。
如何通过信息化建设促进经营现代化和管理精细化,降低保险经营成本,通过信息化建设促进保险电子商务、跨地区保险服务等新型业务模式,加快保险创新。如何通过信息化建设加强前台服务资源整合和后台资源集中,促进资源利用高效化,有效支持保险综合经营和集团化发展的需要。这三个如何都是保险行业目前亟需要解决的问题。
价值保护闪存助力
数据价值对于金融保险行业至关重要,HDS副总裁兼中国大陆及台湾地区总经理庄国光曾接受记者采访时就表示:“金融行业客户如今对存储数据的要求有着独特的看法,客户多以价值创造为导向,成本意识强,他们如今更注重数据来为其提高价值创造的能力。”
确实,目前来看,中国平安、中国人保、中国人寿等大型保险集团均已建立或正在建立自己的大型后援中心,对数据保护建设的投入明显加快。中国平安早在2003年就启动了后援管理中心的立项工作,是国内最早采用后援集中管理模式的金融机构,进一步发挥数据对其发展的引领和支撑作用,是中国平安面临的一项重要而艰巨的任务。这也是中国平安保险(集团)股份有限公司决定部署HDS企业级加速闪存模块(HDS Accelerated Flash,简称HAF)的分层存储解决方案实现了核心结构化的数据生态体系的原因。
管理+可控是关键
庄国光表示:“闪存存储系统最大优势是提供远超磁盘存储系统的性能,HDS的分层存储方案在提供了强大的存储性能基础支持,又提供了业界企业级存储所具有的高可靠性和丰富的管理功能性,而且混合部署方式可以大大提升存储服务总体性价比,分层解决方案以相同的成本提供不同业务需要的性能,这非常适应了当前金融行业OLTP应用场景存储服务持续发展的要求。”
HAF是HDS针对企业级应用设计的闪存技术,配合存储系统上的HAF闪存访问加速软件和HDS Dynamic Tiering动态分层软件,能优化对闪存模块的访问,实现自动化的数据和文件分层,让大容量低功耗的闪存盘真正融入基础架构中。
方案优势分析
为了应对在业务高峰期会出现爆炸性的访问增长,HDS在不改变平安现阶段的存储体系架构的同时,最大化地发挥闪存优势,建立了高性能、高扩展和高可靠的分层数据存储平台。HAF在设计时规避了传统SSD的一些缺陷,在持续性能方面,它是传统MLC SSD的五倍;在单位容量和存储密度方面,HAF是传统SSD的四倍,可以有效降低闪存的单位成本。同时,HAF解决了很多闪存固有的生命周期和访问性能下降问题:
首先,普通的 MLC寿命有限,在重复擦写一段时间之后闪存颗粒和闪存控制器都会无法使用。HAF利用专有闪存控制器,可以保证数据被写到更多的芯片上,减少对少数闪存芯片进行大量擦写的操作;另外,HAF还增加冗余的闪存芯片,以替换磨损较严重的芯片。
其次,闪存颗粒在重复擦写一定次数之后性能会骤降,这个缺点使得闪存很难在企业级存储中进行大规模的推广。HAF的闪存控制器可以有效的对多余空间进行回收,芯片数据的整理以及数据的在线压缩等等;此外,HAF增加闪存总线和eMLC的芯片,32条闪存总线和128个eMLC闪存芯片都有利于减少对单一闪存芯片进行过多的擦写,而且可以提升闪存的读写性能。
另外,借助HDS加速软件Flash acceleration和动态分层软件HDT (HDS Dynamic Tiering),能够更充分发挥HAF的性能。尤其HDT利用调用最频繁的分页对最高存储层进行完全分配,可以最大限度提高其利用率,从而提供最佳性能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31