做好准备 迎接大数据时代来临(1)_数据分析师培训
当今世界进入大数据时代是一种客观趋势,数据成为宝贵的资产,能否充分利用大数据关系到一个系统的智慧、一个企业的前途、一个机构的效率、一项决策的成败……。坚持“三个集中、四化同步”跨越发展的开阳,加快实施创新驱动发展战略,抢抓“高速”(即:高速铁路、高速公路、大数据)时代来临的机遇,着力引进发达地区的资本、技术、人才和一切先进的生产方式、管理手段,借助外力加快发展。
一、大数据的相关概念
大数据是云计算、物联网、移动互联网、智慧城市等新技术、新模式发展的产物,它具有数据量大、类型复杂、内容变化快的特征,蕴含广泛的应用价值和巨大的市场机会,将改变新一轮产业格局,推动经济社会的深刻变革。作为新兴产业业态,大数据产业在国内外尚未形成垄断,整个行业正处于积极的竞相发展布局阶段。种类广泛、数量庞大、产生和更新速度加剧的大数据蕴含着前所未有的社会价值和商业价值,被评论为“新的石油”、“类似货币或黄金的新型经济资产”,发展潜力十分巨大。据美国研究机构统计,大数据能够为美国医疗服务业每年带来3000亿美元的价值,为欧洲的公共管理每年带来2500亿欧元的价值,帮助美国零售业提升60%净利润,帮助美国制造业降低50%产品开发、组装成本。
大数据产业是IT技术创新与应用的必然趋势。随着云计算、移动互联网和物联网等新一代信息技术快速发展,社会信息化、企业信息化日趋成熟,社会化网络逐渐兴起,以及传感设备、移动终端越来越多地接入到网络,各种统计数据、交易数据、交互数据和传感数据正在源源不断从各行各业迅速生成,全球数据的增长速度之快前所未有、数据的类型也变得越来越多。2012年全球被创建和被复制的数据总量达2.7ZB(1Zb=1万亿Gb,相当于20亿个普通电脑硬盘容量),是2002年全球数据总量的2亿倍;其中文本、照片、音频、视频、医疗影像等非结构化内容超过85%。
纵观世界产业经济发展史,能够带来应用价值的新技术一定能发展成繁荣的产业。大数据技术的创新与应用,不仅能够应对数据爆炸带来的挑战,还能够创造出巨大的价值、提升社会生产率,大数据必将发展成为重要的新兴产业。
概念一:物联网
1999年,物联网概念由麻省理工学院提出,早期是指依托射频识别(Radio Ferquency Identification ,RFID)技术和设备,按约定的通信协议与互联网的结合,使物品信息实现智能化管理。现在,物联网指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 它是在互联网基础上延伸和扩展的网络。狭义物联网即“联物”,基于物与物间通信,实现“万物网络化”。广义物联网即“融物”,是物理世界与信息世界的完整融合,形成现实环境的完全信息化,实现“网络泛在化”,并因此改变人类对物理环境的理解和交互方式。目前已广泛应用于仓储管理、智能运输、医疗、健康管理、安全管理、环境保护等领域。特点:一是全面感知。通过射频识别、传感器、二维码、GPS卫星定位等相对成熟技术感知、采集、测量物体信息。二是可靠传输。通过无线传感器网络、短距无线网络、移动通信网络等信息网络实现物体信息的分发和共享。三是智能处理。通过分析和处理采集到的物体信息,针对具体应用提出新的服务模式,实现决策和控制智能。
概念二:智慧城市
物联网的核心是业务应用的创新,智慧城市建设无疑是物联网应用推广的最重要途径之一。智慧城市领域包括智慧政府、智能交通、智慧能源、智慧物流、智慧环保、智慧社区、智慧楼宇、智慧学校、智慧企业、智慧银行、智慧医院、智慧生活以及这些智慧行业之间的跨行业应用,这些与城市发展水平、生活质量、区域竞争力紧密相关,并推动城市可持续发展。通过物联网的各种智能感知手段,可以让整个城市的功能实现更智慧。智慧城市实际上依托的信息来源,都是由物联网提供的。物联网是一个城市的神经系统,一个高水平的物联网将会催生高水平的智慧城市。
概念三:物联网与大数据的关系
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22