大数据非万能:数据分析解决不了的问题
“大数据”时代,数据成为决策最为重要的参考之一。但《纽约时报》专栏作家 David Brooks 认为:数据不懂社交、不懂背景,会制造出更多的噪音,遗漏真正有价值的东西,大数据无法解决大问题。
不久之前我曾与一位大型银行的首席执行官一同用餐。他正在考虑是否要退出意大利市场,因为经济形势不景气,而且未来很可能出现一场欧元危机。
这位CEO手下的经济学家描绘出一片惨淡的景象,并且计算出经济低迷对公司意味着什么。但是最终,他还是在自己价值观念的指引下做出了决定。
这家银行在意大利已经有了几十年的历史。他不希望意大利人觉得他的银行只能同甘不能共苦。他不希望银行的员工认为他们在时局艰难之际会弃甲而逃。他决定留在意大利,不管未来有什么危机都要坚持下去,即便付出短期代价也在所不惜。
做决策之时他并没有忘记那些数据,但最终他采用了另一种不同的思维方式。当然,他是正确的。商业建立在信任之上。信任是一种披着情感外衣的互惠主义。在困境中做出正确决策的人和机构能够赢得自尊和他人的尊敬,这种感情上的东西是非常宝贵的,即便它不能为数据所捕捉和反映。
这个故事反映出了数据分析的长处和局限。目前这一历史时期最大的创新就在于,我们的生活现在由收集数据的计算机调控着。在这个时代,头脑无法理解的复杂情况,数据可以帮我们解读其中的含义。数据可以弥补我们对直觉的过分自信,数据可以减轻欲望对知觉的扭曲程度。
但有,些事情是“大数据”不擅长的,下面我会一一道来:
数据不懂社交。大脑在数学方面很差劲(不信请迅速心算一下437的平方根是多少),但是大脑懂得社会认知。人们擅长反射彼此的情绪状态,擅长侦测出不合作的行为,擅长用情绪为事物赋予价值。
计算机数据分析擅长的是测量社会交往的“量”而非“质”。网络科学家可以测量出你在76%的时间里与6名同事的社交互动情况,但是他们不可能捕捉到你心底对于那些一年才见2次的儿时玩伴的感情,更不必说但丁对于仅有两面之缘的贝阿特丽斯的感情了。因此,在社交关系的决策中,不要愚蠢到放弃头脑中那台充满魔力的机器,而去相信你办工作上的那台机器。
数据不懂背景。人类的决策不是离散的事件,而是镶嵌在时间序列和背景之中的。经过数百万年的演化,人脑已经变得善于处理这样的现实。人们擅长讲述交织了多重原因和多重背景的故事。数据分析则不懂得如何叙事,也不懂得思维的浮现过程。即便是一部普普通通的小说,数据分析也无法解释其中的思路。
数据会制造出更大的“干草垛”。这一观点是由纳西姆?塔勒布(Nassim Taleb,著名商业思想家,著有《黑天鹅:如何应对不可知的未来》等书作)提出的。随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多。这些相关关系中,有很多都是没有实际意义的,在真正解决问题时很可能将人引入歧途。这种欺骗性会随着数据的增多而指数级地增长。在这个庞大的“干草垛”里,我们要找的那根针被越埋越深。大数据时代的特征之一就是,“重大”发现的数量被数据扩张带来的噪音所淹没。
大数据无法解决大问题。如果你只想分析哪些邮件可以带来最多的竞选资金赞助,你可以做一个随机控制实验。但假设目标是刺激衰退期的经济形势,你就不可能找到一个平行世界中的社会来当对照组。最佳的经济刺激手段到底是什么?人们对此争论不休,尽管数据像海浪一般涌来,就我所知,这场辩论中尚未有哪位主要“辩手”因为参考了数据分析而改变立场的。
数据偏爱潮流,忽视杰作。当大量个体对某种文化产品迅速产生兴趣时,数据分析可以敏锐地侦测到这种趋势。但是,一些重要的(也是有收益的)产品在一开始就被数据摈弃了,仅仅因为它们的特异之处不为人所熟知。
数据掩盖了价值观念。我最近读到一本有着精彩标题的学术专著——《‘原始数据’只是一种修辞》。书中的要点之一就是,数据从来都不可能是“原始”的,数据总是依照某人的倾向和价值观念而被构建出来的。数据分析的结果看似客观公正,但其实价值选择贯穿了从构建到解读的全过程。
这篇文章并不是要批评大数据不是一种伟大的工具。只是,和任何一种工具一样,大数据有拿手强项,也有不擅长的领域。正如耶鲁大学的爱德华?图弗特教授(Edward Tufte)所说:“这个世界的有趣之处,远胜任何一门学科。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31