大数据时代我们最需要什么样的人才
当今世界,正在从数据时代走向大数据时代。今年两会,“大数据”第一次出现在政府工作报告中,这表明,我们对大数据重要性的认识上升到国家层面。
与互联网的出现一样,大数据带来的不仅是信息技术领域的革命,它正在改变着人们的生活以及我们理解世界的方式,并成为更多新发明、新服务的重要源泉。
大数据时代到来,将给中国人才队伍带来哪些机会?提出什么样的挑战?谁将是未来最热门的人才?让我们一起来看看吧——
“人人皆可成才”将成现实
记者:大数据到底有什么用?
吴江:大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升对整个社会的管理水平,对于人才管理领域来说,更是迎来了一个得以迈上新台阶的大好时机。
记者:大数据对人才工作带来最直接的影响是什么?
吴江:小数据时代,数据掌握在精英手里;大数据时代,数据掌握在老百姓手里。大数据的公开透明,可以推动社会变革发展,更大意义在于,人人可以通过分析大数据,对自己的未来作出理性抉择。数据时代,“人人皆可成才”,将从理念走向现实。
“新一轮人才流失”要避免
记者:大数据对全球产业带来哪些影响?
吴江:与互联网的出现一样,大数据不仅是信息技术领域的一场革命,它将在全球范围内启动透明政府、加速企业创新、引领社会变革。
一家名为“埃森哲”的管理咨询公司去年调查了600家英美公司发现,33%的受访企业表示正在整个企业范围内积极使用大数据。68%的企业认为,企业自身的高管团队作为一个整体,能够参与和支持数据分析法的部署,并基于事实情况作出决策。有三分之二的公司在之前18个月任命了负责数据管理和分析工作的高管,其他企业中的71%准备任命此类高管。
美国通用电气公司就较早地意识到了大数据这个难得的机遇,并采取了行动。通用电气正启动在旧金山湾区投资15亿美元,建立一个全球软件和分析中心,拟雇用至少400名数据科学家,现在已经有180名各就其位。
“埃森哲”去年开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国还似乎出现了少量的过剩。
记者:为什么只有中国没有出现短缺?
吴江:因为需求不足。有需求,才有紧迫感。我们的政府和企业都还没有关注到这个问题。我们的企业真的不需要大数据人才吗?当然不是,只是我们还没有意识到问题的严重性。大数据时代求发展,企业、政府首先要明确大数据高管的岗位设置,没有岗位我们怎么能留得住人才,抢人才更是谈不上。
另据“埃森哲”公布的数据,美国新增数据分析高管职位的数量将占全世界的44%,但美国只能提供23%,将会有3.2万人的人才缺口。不足的部分怎么办?美国必然会从全世界范围内网罗。正如表面上看中国目前这类人才还有富余,新一轮人才流失的危险恐怕难以避免。但中国如果再继续向美国输送这类人才的话,在大数据时代的国际竞争中将落伍。
我认为,从中央到地方必须重视大数据人才队伍的建设,从基础抓起,完善岗位设置,在培养、留住人才的同时,更要积极面向全球吸引相关人才。
“首席信息官”亟待设立
记者:大数据时代的中国,最需要什么样的人才?
吴江:现在有一种错觉,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才。
我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。我认为,对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。
政府和企业的领导者,也要有意识地转变思维方式,学习用数据思考、说话和管理。在这个飞速变化的社会中,过去的经验甚至可能成为现在的束缚。比如,我们常常听到管理者抱怨“90后”员工难管,就是因为过往的激励方式对他们不奏效。这一点还体现在走出国门的中国企业里。很多人发现与自己的上司、同事和下属沟通不畅,因为各自是在不同文化中成长起来的。管理者需要不断更新自己的数据库,学会用大数据的方法,随时去找到合适的解决方案。
记者:组建大数据管理人才队伍,该从何处切入?
吴江:首先要设立专门的数据管理岗位,进入决策层,推动各单位迎接大数据时代到来。我已连续几次提交《关于建立政府首席信息官制度的提案》,建议借鉴国际通行做法,在各级政府及其所属部门组建首席信息官办公室,负责人为首席信息官,直接向政府或部门行政首长负责。他们的职位必须是矩阵式结构,在中央有专门领导机构,推动形成国家级的数据库和数据平台,人员要定期交流,以便全方位掌握数据,消除信息孤岛。
政府首席信息官制度的立足点,在于为国家整体服务,切忌为某家单位粉饰太平。今年我再次提交了这方面内容的提案,这个问题必须引起高度关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30