浅谈SEM数据分析的意义、维度和结果_数据分析师
提起SEM,不可避免的要谈到数据分析。“对数据变IC芯片激光打标样品-IC芯片化敏感,具有一定的数据分析能力“是所有公司都会提到的硬性要求。那么,SEM的数据分析到底应该怎么做呢?利用SEM数据分析又能IC芯片激光打标样品-IC芯片起到怎样的效果呢?从数据分析的”意义“、”维度“和”结果“这三个方面来考虑,这些问题就不难回答。
同理,SEM的数据分析也是如此,我们只是通过数据分析在行业低谷到来前避免潜在的无效投放,在行业高峰来临之际,做好充足准备。如此进退有度,SEM效果也会随之提升。 SEM数据分析的维度 几乎所有SEM推广账户的后台都能为用户提供数据统计和下载服务。面对琳琅满目的数据记录,不少SEMER会看花眼。我们该看哪些数据呢?这就要求SEMER拥有一定对数据维度筛选的能力。我们需要根据自己投放SEM的目的来筛选需要的维度去看数据,这样不但不会让人头晕,更能提高我们数据分析的效率。
目前,SEM的投放目的基本可以分为效果投放和品牌宣传两类。其中,效果转化是指以咨询量、订单量等为目的的投放。从结果倒推回去看,这样我们会发现要有咨询和订单需要用户访问我们的网站,而让用户访问我们的网站则需要网站有展现,并且要有足够的出价来确保其必要的排名,这样能保证一定的点击量。所以,效果投放的账户往往需要关注点击量、展现量、点击率、消费、平均排名等相关维度的数据。另外,还要根据咨询收益、订单收益计算投入产出。更细化的数据,还可以关注到每一个页面的转化率等。
品牌宣传更注重网站品牌的曝光率。这就需要我们更关注网站的展现量,以及不同关键词和搜索词的具体展现和点击等。如果想进一步了解网民对品牌的认知度,还可以观察每个访客的访问深度,以及各个页面的停留时长等。 此外,要真正做好SEM的数据分析,SEMER还需要根据各自的情况,关注推广账户外的数据。通过其他终端各维度的数据反馈和整合,做好SEM的数据分析。 SEM数据分析的结果 如前文所说,SEM的数据分析可以改善投放效果。
但是,SEM最终的结果其实可以包含更多。比如,SEM的数据分析可以为SEO提供更多帮助。 众所周知,SEO的操作要通过较长的时间来体现效果。因此,选词、站内布局都必须慎重。若一开始就错了,那么后面无论是终止,还是修改,都会造成时间、人力等成本的浪费。可谓“一步走错,全盘皆输”。而SEM的投放只要审核通过后便开始进入数据收集和反馈阶段。通过SEM投放,我们很快就能知道关键词的搜索量如何,转化如何,有没有其他相关关键词等。凭借SEM投放得到的数据,加以分析和筛选,再交由SEOER去操作,这样能更明确操作方向,并节省不少摸索的时间。
一个SEMER在做SEM数据分析的时候该做些什么呢? SEMER们既可大张旗鼓的做上几十页数据报表并加以分析陈述,也可以简单的只花几分钟汇总一下某个时段的投放数据。SEM的数据分析犹如人的一生,或浓郁烈酒,或淡如白水,关键是从中能得到什么。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22