为什么你一定得用高级数据分析来做体育营销_数据分析师考试
体育赛场上应用数据并进行相关分析,以此来帮助球队、球员提高表现,这方面已经取得了很大的进步;在其他领域,利用数据分析来帮助企业提高投资回报率也已经不是什么新鲜事,但为什么数据分析在体育营销领域却没有什么发展?数据分析在体育营销中到底能起到什么作用?
随着技术的出现,体育迷终于可以通过多种设备来观看和讨论直播体育赛事。在过去十多年间,体育产业最具影响力的趋势就是数据分析的影响力不断上升。
之前靠主观判断而进行的有关球员发掘、球员发展和训练的决策,现在都能通过数据来了解情况。通过对数据的分析和解读,NBA和美国职棒大联盟(MLB)中的一些具有前瞻性思维的组织,已经感觉到数据给决策者以及整个组织所带来的优势。
现在类似的技术改革正在赛场外发生,在那些将资源分配给体育赞助的营销人员以及那些研究体育赞助功效的学术派中展开。在战略决策中,已经使用了预测性的高级数据分析,旨在帮助体育赞助关系中的买方和卖方。这些战略决策包括:相关费用、收益、投资回报以及为什么有些赞助关系持续的时间要比其他的赞助关系持续的时间长。
以印象为基础的赞助评估方法和联合数据可以让营销人员更好地理解自己的目标消费者的喜好和习惯,这种评估方法仍然很重要,在体育营销中,这种“点球成金”之法远远超出了描述性的统计,已经涉及到多层面的建模方法。
明年的营销科学世界营销学术大会将在巴黎举行,会议重点是数据分析和营销实践(利用消费者娱乐活动)的交叉领域,以及最近一些反映这一新趋势的几项研究。
最近的一项研究,由Joe Cobbs和欧洲的一些行业合作伙伴共同对一级方程式赛车车队赞助商5年来的电视品牌曝光数据和成本进行了收集和整理,该项研究的成果发表在2014年12月份《广告研究》杂志上。通过对车队表现进行建模,预测出车队赞助商的品牌曝光变化率达到87%(表明赞助曝光在很大程度上是车队场上表现的产物);而赞助投入产出模型表明,将大部分资源分配给顶级车队的赞助商,更可能获得更高的投资回报率。
另外一份即将刊登在《营销情报和规划》杂志上的研究,使用了回归原理建模,对阿迪达斯、耐克和安德玛应该分配多少资源在大学体育项目上进行预测,以此来决定作为学校官方运动装备赞助商的他们,相对其手中的权益,他们的赞助价格值不值。研究发现,鉴于其市场领导地位,耐克公司在高校赞助方面的权益“物超所值”,而作为挑战者的阿迪达斯和安德玛为了能从耐克手中夺取资源,被迫花高于实际权益的价格来获得这些资源。
还有一项尚未公开的项目,该项目是与俄勒冈州大学的华沙体育营销中心学者Bettina Cornwell的合作项目。该项目使用赛事历史分析模型来确定是否存在可以用来预测解除赞助关系的因素。初步结果表明,存在很多与品牌自身相关的因素(包括品牌资产水平以及是否有现金等价物含在赞助之中)、经济状况(如赞助商所在国家发生通货膨胀)以及其他赞助方面的综合因素(比如,赞助商的总数量)。从统计数据来看,这些因素对于赞助商是否考虑放弃赞助奥运会和世界杯会产生很大的影响,是最显著的预测因素。对于球队和联赛来讲,这取决于为了生存所获得的赞助收入。该研究还能将赞助中所涉及的众多影响因素进行隔离研究和监测。
坦白来讲,营销分析已经不是一个新概念。在销售方面,使用这种营销分析来评估价格变化会对消费者的行为产生什么影响,在这方面已经取得了很大的进步。从品牌营销的角度来看,旗下有多个品牌的集团大亨,比如卡夫食品和宝洁,他们已经使用营销组合模型和其他先进的方法多年,以此为依据来帮助集团决策层来制定与媒体、广告和传统促销相关的资金分配。
那么,为什么这些方法没能在几年前就应用到赞助投资当中去呢?
其主要一个原因就是,即便是像宝洁这样在体育赞助方面投入巨大的公司来讲,其体育营销方面的投资在其总营销投资组合中只占非常小的比例,他们在像受测媒体等其他常规项目上的投资才是重点,体育营销方面的投资大约只占总投资额的1%到3%之间。鉴于此,那么像宝洁这样的企业为什么要分配人力、将其精英分析师放在这方面呢?
目前,有人呼吁要加强学术界和产业界之间的合作。一些像尼尔森这样的机构已经在积极主动地利用这些关系来造福业界、研究人员和学生。当然,还需要进一步的合作来强化这一势头,而将这种先进的数据分析方法运用到体育赞助之中也十分必要。
其实,相比这种方法能给企业带来的潜在价值和洞见、帮助企业提高决策的精准度并节省无谓的资金支出等等,分配人力在体育赞助方面的开支微乎其微。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31