大数据改良与改革中国保险业_数据分析师考试
大数据可以有效改造与升级传统保险价值链,我们称之为“改良,而最重要的“改良效应”发生在风险评估与定价、交叉销售、防止客户流失、理赔欺诈检测及理赔预防与缓解五大环节。大数据还助力险企突破创新,我们称其为“改革”。
目前,大数据作为“催化剂”在车联网、可穿戴设备、智能家居和平台生态圈构建方面起重要作用。为了更好地驾驭大数据对保险行业的改良及改革,保险公司需要从数据获取、应用和组织三大方面构建包括开拓数据来源、建立许可与信任、构建商业应用场景、数据分析与建模、数据存储与整合、组织建设、专注的数据人才、治理和文化在内的八项专业能力。
为保证整个保险行业数据应用的规范和有效,监管机构首先需在数据保护方面起到监督和引导作用,从引导行业自律和引导消费者两方面入手,推动消费者数据保护,规范商业数据应用行为。保险行业数据依赖性较强,一旦消费者隐私方面出现问题将严重制约行业可持续发展,监管机构应积极引导设立行业自愿达成并遵守行业标准,完善信息披露机制,监督行业自律。
其次,当前信息产业发展愈发迅猛,数据应用愈发复杂,给消费者识别有效信息增添难度。再加上法律体系尚未明确定义数据保护,中国消费者数据保护意识相对薄弱,因此数据获取、传递、应用中存在很多的问题和风险隐患。监管机构应高度重视金融消费者安全教育或培训,在社会上广泛宣传基本金融常识,引导消费者树立数据保护意识,减少安全隐患。
再次,监管机构需推动保险行业基础设施建设,重点在于建立行业级的数据共享平台,更好支撑风险评估、费率技术、征信、信息体系等。共享的行业数据平台能为保险行业发展带来积极作用,有助于整合行业资源、建立更科学的行业定价基准和风险管理数据库等,进而规范保险市场秩序、真正发挥保险的社会功用。
值得关注的是,我国保险业已经成立了行业数据公司,即中国保险信息技术管理有限公司,但其定位尚需探索明确。因此建议借鉴国外行业机构推动的保险数据库公司的运营定位,最终选择适合自己的发展之路。例如,英国的保险协会ABI为非盈利性机构,定位于积极代表行业影响政府政策,具有很强的行业话语权。ABI可代表90%以上保险商,制定行业规则,并提供数据和分析服务。德国的GDV为德国私人保险公司的联盟,为非政府机构,但可”软性“影响政府政策。它主要提供的产品和服务为向德国联邦金融监管局反映行业观点和需求、保护消费者权益、提供净索赔额等统计数据、进行公共关系和教育工作。美国的Verisk Analytics是纯商业性质的保险数据公司,业务主要包括以提供数据为主的风险分析,和应用风险模型为主的决策分析,还向所有行业的风险经理人提供信息服务,在保险业之外,Verisk Analytics通过持续的并购进入了医疗保健、抵押贷款等领域,扩大了其产品种类。
此外,监管机构还需推进立法工作,通过法律保障体系明确责权,建构良好市场环境。目前,美国、欧盟、国际电信联盟均通过数据保护法或隐私权保护等法案,积极寻求立法手段规范数据使用,印度、马来西亚、韩国等也在积极讨论监管议题。我国法律监管依旧存在空白地带,如何搭建基础性法律保护体系、建构长效纠纷解决机制,是监管机构的急需考虑的问题。从发达国家经验看来,严格的数据保护法律可能会对商业应用产生一定副作用,促使消费者不愿共享数据,减缓互联网信息产业发展。在此背景下,监管机构应在立法之时适度留出发展空间,从实践中探索监管创新政策。
监管创新是大数据技术不断发展深入的必然结果。例如,众安保险成立于上海,然而业务范围迅速遍布全国,迅速突破了现有的地域监管框架,甚至我们尚未意识到其他的很多挑战,例如在业务监管、偿付能力等领域。因此,监管机构应正确认识信息化产业创新发展速度,及早迎接大数据时代来临。监管机构可深入调研行业发展现状,开展顶层设计,为行业发展扫除技术或制度障碍。再者,适度宽松的产业政策可激励保险大数据的蓬勃发展,如申报重点项目、设立专项发展资金、支持技术人才培养计划、引导社会上风险投资机构进行投资等。此外,监管机构可不断探索数字化监管、跨界监管等创新监管方式,设立风险预警机制,提高监管效率,促进保险产业健康发展。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20