浅析大数据发展的“四重点 七原则”_数据分析师考试
当这世界上累积的数据量越来越庞大,各企业制订商业策略所纳入考量的数据也跟着大幅增加,这时候如何减少将数据(Data)转换成资讯(Information)的时间变得尤其重要。
采用记忆体内运算技术减少原始数据的移动,仅搬移运算后的结果,加快处理的速度,并且透过压缩技术减 少数据量,能够有效提升数据库效能,应付企业对数据运算量及速度日益升高的要求,也使得企业得到的资讯更即时、能更快地回应各种市场需求及回馈,甚至开发 出全新市场、开创出其独一无二的价值。那未来大数据时代发展的重点将是一个永恒的话题。
万物联网的时代
在物联网概念起飞的这个时代,越来越多行动装置、智慧型居家装置被市场接受,进入到我们的生活中,根据预测,智慧型装置的数量将会从现在到2020年将从130亿成长到500亿。
可以预期的是更多种类型的数据将以更多形式被感测、收集起来,而且这些大量且即时性的感测数据属于非结构化数据,也就是从文本分析到未经处理的文字、声音与影片导出的数据,如何储存处理及分析成为现在十分重要的课题,可能从中挖掘出未知的趋势并带给人类生活 重大的改变。
大数据上云端
如果说大数据是现在最夯的科技潮字,那上一个最红的则是云端运算。从2006年被提出后,云端便广为科技业所使用,各企业更是积极提出各种云端服务。
大数据与云端技术可以说是相辅相成,大数据大大的推动了云端服务,而云端服务的普遍也使得数据量攀升。2014年全世界平均每天产生23TB的 数据,大约是2012年的920倍,以这种情况来看,云端服务在大数据时代相当于“公共设施”般不可或缺,不但用来储存各式各样的数据,还利用云端运算来 建构基于大数据的应用程式和API,建立模型预测未来的事件。
人才很重要,平台跟工具更重要
可以预期的是更多种类型的数据将以更多形式被感测、收集起来,而且这些大量且即时性的感测数据(SensorDrivenData)属于非结构 化数据,也就是从文本分析到未经处理的文字、声音与影片导出的数据,如何储存处理及分析成为现在十分重要的课题,可能从中挖掘出未知的趋势并带给人类生活 重大的改变。
大数据时代,迅速吸收、整合与分析数据的能力缺一不可,而数据又来自内部原有的数据以及未来源源不绝诞生的海量数据,最终你必须把数据转化成洞见,并且依此为本,能在各种状况采取最适当的解决方案。以下就是企业转型数据行业所需遵循的七大原则。
原则 1:从原有的业务与技术中开始着手
想要转型成以数据为本的公司,首先一定得先确认业务目标,接着便能规划战略蓝图,运用新的数据来源,达成你所设定的目标。数据成熟度与技术两者双管齐下的起点,将决定未来整趟旅程的行进过程。若能适当的部署业务与技术,就可以堪屎系统性地开展业务流程与商业模式,并且明辨哪些质化元素能被量化元素取代。
原则 2:从相互连结的物联网中建造数据景观
物联网的实现近在咫尺,而且已经产生(而且会持续产生)史无前例的巨大数据。“存活超过 20 年的企业,近来不断设法制定企业数据策略,因为他们里头有数不清的数据市集和数据孤岛。尽管公司组织努力解决数据孤岛的问题,但是宛如瀑布般倾泻而下的数据,只会一再造出新的孤岛,除非你的环境已经准备好应付那些海量数据,毕竟现在数据量产生的速度,远超 20 年前我们所习惯的步调。不过幸好,大数据热潮孕育了许多可以协助大企业管理笨重数据负担的新技术,因此能否好好善用那些新技术,把数据转化成真正的业务需求,是企业在形塑数据景观时不可或缺的原则。
原则 3:建立数据科学与分析的文化
想靠数据发威,光有技术不够,还得建立一个理解数据、而且懂得利用数据的文化,两者缺一不可,文化甚至更加重要。对我们来说,懂数据不再只是副产品,而是重要的资产,你要培养这是一种资产的心态,你要知道,数据有可能帮你重整业务流程或挖掘出新的收入来源。因此,数据科学不该只是几个人的职责,必须灌输到整间企业的全体成员身上,让所有的决策都变得更明智。
原则 4:从小做起,不断迭代
我们可以预期使用者对于资讯与数据洞见的需求会愈来愈多,这表示他们要能随时随地获取这些资讯。这不是一件容易的事情,但是企业可以先从“小事”做起,找到一个可以从数据中直接受益的业务目标,接着反覆改善,让团队不断汲取经验,最终能以数据洞悉、解决业务问题。
原则 5:用数据科学丈量数据科学的成败
要让数据当个称职的主角,你得采用数据科学的方法来判断数据科学是否成功,这不是什么跳针的玩笑话。随着你的企业从数据洞见取得的营收愈来愈多,你得要能辨析数据政策是否产生重要的改变,要发展一套尺度用衡量成败。我们怎么丈量成功或失败?洞察就是我们最重视也最关键的 KPI。
原则 6:数据的安全与隐私至高无上
只靠直觉行事很糟,但未经筛选、从良莠不齐或不可靠的数据中采集作为决策考量,更糟。倘若你无法处理数据安全以及尊重隐私,将会导致企业暴露在险境之中。维护数据资产的安全与隐私,是最基本的要务,我们总是尽己所能管理数据。
原则 7:赋予成员洞察作用点的力量
唯有公司内部的成员面对数据洞见时能够迅速产生反应,数据才有价值。这些洞见在作用点上必须有所区隔,比方说,如果现阶段的目标是优化购物车,反应够快的人就会想到可以在交易完结之前,提供消费者某些推荐商品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31