大数据分析错误认识那么多 舍恩伯格你知道吗
随着大数据时代的到来,很多人对大数据产生了浓厚的兴趣,然而,大数据只是一个新概念,很多认识都是不正确的。 大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。大数据分析拥有自身的特点,与计量经济学既有区别又有联系。当前对大数据的分析存在许多流行观点,但其中很多核心观点都值得商榷。
大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。云计算和搜索引擎的发展,使得对大数据的高效分析成为可能,核心问题是如何在种类繁多、数量庞大的数据中快速获取有价值信息。大数据在社会分析、科学发现和商业决策中的作用越来越大,金融只是其中的一个应用领域。
什么是大数据 大数据是一个新概念,英文中至少有三个名称:大数据(big data)、大尺度数据(big scale data)和大规模数据(massive data),至今未形成统一定义。但一般认为大数据具有四个基本特征(即所谓4V特征):数据体量庞大(volume)、价值密度低(value, 也有人理解成应用价值巨大)、来源广泛和特征多样(variety)、增长速度快(velocity, 也有人理解成需要高速分析能力)。 从学术角度,对大数据的讨论基本属于数据科学(Data Science)和数据挖掘(Data Mining)的范畴。 对大数据分析的主流误解 舍恩伯格与合作者的《大数据时代》非常流行,但里面的很多核心观点都值得商榷。
第一,他们认为,大数据分析不是针对随机样本,而是全体数据。尽管数据收集和分析手段足够发达后,对全部数据的收集和分析成为可能,但从成本收益上衡量,这样做不是总有必要。根据中心极限定理,统计分析质量与样本数量之间存在平方根关系。比如,样本数量提高100倍,分析质量提高10倍。而统计分析工作量与样本数量之间存在线性关系。
比如,样本数量提高100倍,存储和计算量一般增加100倍。这样,样本数量增长到一定程度后,新增工作量对应的成本就会超过质量提高产生的好处。因此,通过科学设计的抽样调查获得有代表性的样本,在大数据分析中仍有价值。 第二,他们还认为,大数据分析不是因果关系,而是相关关系。这个说法在统计学中是老生常谈,不是什么新观点。统计学基于相关关系,只能被用来证伪因果关系,而不能被用来证实因果关系。大数据分析的基础理论也是概率论和数理统计,从根本上就属于相关关系的范畴。
第三,大数据分析也不是万能的。基于大数据的预测可以抽象表述为:用 表示已知信息,用 表示未知信息,寻找关于 的函数 作为 的预测。预测误差是 ,用 (类似于均方误差)来衡量预测效果。概率论有一个基本结论: 对任意 ,总有 ,其中等号仅当时才成立,所以 也被称为最佳预测(best predictor)。
可以看出两点结论:首先,大数据分析中,各种算法的核心任务是使 尽可能接近理论上的最优预测 ;其次,即使在最优预测上, 代表的预测误差仍不能被消除,是内生于信息结构的。比如,即使信息技术非常发达,如果现实世界中仍有部分信息不能被数字化(从而不能用在大数据分析中),这部分被“尘封”的信息就决定了大数据分析的有效边界。
第四,大数据能降低信息不对称的程度,但不能消除随机性(不确定性);有助于评估风险(未来遭受损失的可能性,其中损失分布可计量),但不能消除奈特式不确定性(其中损失分布不可计量)。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22