数据造假的三种常见形态_数据分析师考试
一、图表欺骗
图表通常用来增强需要文字和数据的说服力,通过可视化的图表更容易让受众接受信息。但图表有时候会表现的不是数据的本质:
1.图表拉伸
如果没有特殊用途,通常图表的长(横轴)与高(纵轴)的比例为1:1到1:2之间,如果在这个范围之外,数据现实的结果会过于异常。比如:
2.坐标轴特殊处理
在很多场合下,如果两列数据的取值范围差异性过大,通常在显示时会取对数,这时原来柱状图间的巨大差异会被故意缩小。通常,严谨的分析师在讲解之前会进行告知。比如:
3.数据标准化
数据标准化也是一个让数据落在相同区间内常用的方法,常用Z标准化或0-1标准化,如果不提前告知,可能会误以为两列数据取值异常接近,不符合实际业务场景,比如:
隐秘层次:★★☆☆☆
破解方法:询问分析师的图表各个含义,了解基本图表查看常识。
二、数据处理欺骗
数据处理中的欺骗方法通常包括抽样方法欺骗、样本量不同、异常值处理欺骗等。
1.抽样方法欺骗
整体样本的维度,粒度和取数逻辑相同的情况下,不用的样本抽样规则会使数据看来更符合或不符合“预期”。比如在做用户挽回中,假如做的两次活动的抽样样本分别是最近6个月未购物和最近6个月未购物但有登陆行为的用户,不用做什么测试,基本上可以确定后者的挽回效果更佳。要识破这个“骗局”只需要询问数据取样方法即可,需要细到具体的SQL逻辑。
2.样本量不同
严格来说样本量不同并不一定是故意欺骗,实践中确实存在这种情况。(遇到这种情况可以用欠抽样和过抽样进行样本平衡)样本量不同分为两种情况:
样本量数量不同。比如要做效果差异对比,第一步是做效果比对,假如两个数据样本量分别是几千和几万的级别,可比性就很小。尤其是对于样本分布不均的情况下,数据结果可信度低。
样本主体不同。这是非常严重的数据引导错误,通常存在于为了达到某种结果而故意选择对结果有利的样本。比如做品类推广,一部分用户推广渠道为广告,另一部分是CPS可以遇见相同费用下后者的效果必然更好。
相同样本不同的客观环境。比如做站内用户体验分析,除了用随机A/B测试以外,其他所有测试方法都没有完全相同的客观环境,因此即使选的是相同样本,不同时间由于用户,网站本身等影响,可信度较低。
3.异常值处理欺骗
通常面对样本时需要做整体数据观察,以确认样本数量、均值、极值、方差、标准差以及数据范围等。其中的极值很可能是异常值,此时如何处理异常值会直接影响数据结果。比如某天的销售数据中,可能存在异常下单或行单,导致品类销售额和转化率异常高。如果忽视该情况,结论就是利好的,但实际并非如此。通常我们会把异常值拿出来,单独做文字说明,甚至会说明没有异常值下的真实情况。
隐秘层次:★★★☆☆
破解方法:在跟数据分析师沟通中,多询问他们在数据选取规则,处理方法上的方法,如果他们吞吞吐吐或答不上来,那很有可能是故意为之。同时,业务人员也要增强基本数据意识,不能被这种不可见的底层错误欺骗。
三、 意识上的欺骗
这种欺骗是等级最高也是最严重的欺骗和错误,通常存在于数据分析师在做数据之前就已经下结论,分析过程中只选取有利于证明其论断的方法和材料,因此会在从数据选择,处理,数据表现等各个方面进行事实上的扭曲,是严重的误导行为!数据分析师需要有中立的立场,客观的态度,任何有立场的分析师的结论都会失之偏颇。
隐秘层次:★★★★★
破解方法:在跟该分析师沟通中,查看其是否有明显立场或态度,如果有,那么该警惕;然后通过上面的方法逐一验证。
综上,当你遇到以下数据情形,就需要警惕数据的真实性了:
数据报告从来不注明数据出处,数据时间,数据取样规则,数据取得方法等。现在市场上很多报告都属于这一类。
数据报告在做市场调研中说明全样本共1000,其中北京可能只有100,基于这100个样本出来的结论显然不可信。事实上很多市场研究报告就是这样出来的。
数据报告中存在明显的观点,对于事物的分析只讲其优势或劣势,不全面也不客观。现在很多互联网分析师就是属于这类,大家注意辨别。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20