机器学习和大数据:是先有鸡还是先有蛋?
“对于机器学习,需要大量容易获得的历史数据。但是,如果你没有这个数据会怎样?”
现在,机器学习几乎无处不在,它经常出现在大数据应用之中。机器学习已经被赞誉为大数据分析和商务智能发展的未来。但是从机器学习中提取价值并不仅仅是在一个新的工具中添加一个插件,或查看一下工作效率和销量的提高。
成功的机器学习项目依赖于很多因素,包括选择正确的主题,对于运行的环境,合理的机器学习模型,当然最重要的是现有的数据。
大数据时代,数据就是财富。我们不得不承认,关于客户交易、销售或设备运行日志的数据是企业所拥有的最宝贵的资产之一。特别是机器学习现在为企业提供的机会远远超越传统的商业智能,比如可以帮助预测未来的销售或潜在的设备故障,从而提高利润和减少临时的维修。
数据,大还是小
在谈论“大数据”时,我们习惯于假设越多越好。虽然现实中常常的确也是这样,数据对于实时在线个性化应用是很关键的,但不同的任务对于数据大小的需求却不尽相同。
对于机器学习任务来说,为了带来价值,虽然10Gb的日志似乎有些少,但有时其实也可以刚好够用,具体要看面对什么样的任务。10Gb的数据对于Google来说也许微不足道,但实际上足以给一个传统的线下企业带来一个巨大的变化。
一个拥有75000人的大公司的人力资源管理部门。如果公司试图预测流动风险,以便更好地规划未来的人力资源战略,并及时采取预防措施,那么他们就可以使用机器学习,而机器学习就可以从分析员工记录开始。这些记录每天都有巨大的不同,反映在工作的时间,角色的转变,通过的培训课程,休病假的天数,等等。虽然这种数据量可能被认为是过少,则深度地挖掘各种要素需要它超越简单的统计,走向机器学习。
在另一个极端,有些公司可能认为他们拥大量的珍贵数据,如很多年的销售报告,可以后来才发现,它们只可作为集成数据,而没有存储原始输入。机器学习需要从细节中学习,仅仅拥有每季度或每年的集成数据对任务来说根本不够。
因此需要数据的多少关键在于用户所面对的具体任务。
历史的经验教训
通常数据集拥有一个时间跨度,而这个时间跨度是非常重要的,它应该足够的长,以反映所有相关的事件以及周期性的变化。例如,如果一个组织要建立一个工作模型来预测一个零售公司的产品需求,这将至少需要两到三年的历史数据,这样才能容纳季节性的趋势。但是,如果要预测昂贵的制造设备几年才可能出现一次的故障,就需要有一个远远长的多的历史数据,以便在故障出现之前检测异常情况并预测故障的发生。
同时,如果你带着巨大的客户基础和认购商业模型进入一个领域,例如移动电话网络、流媒体业务或在线游戏,利用短短六个月的数据开始一个有意义的机器学习项目(例如,预测客户的流失)是完全可行的。
通常情况下,数据的组织和存储是一个公司基础架构部门的关键任务,关系到公司的核心利益,如何选择合适的存储方案呢?是充斥着差异和错误的非结构化存储,还是未集成的十几个独立系统。虽然引进数个单独的存储库是摆脱数据孤岛、提高数据质量的一种有效方式,但这个过程是漫长的,非常昂贵,而且不会带来直接的价值。但是,如果引入机器学习,利用非结构化存储依然可以帮助调整进一步的基础设施投资以及引导数据收集策略,非结构化存储目前是一种非常有效的数据组织和存储方式。
数据还可以来自于其他什么地方?
很多企业忽略了一件很重要的事情,就是企业可以从外部环境中购买数据。
一方面,最强大和最重要的信号通常隐藏在该公司所拥有的数据中。因此,相比于银行客户的社交媒体行为,他们的交易中所蕴含的知识可以更好地预测客户是否将偿还贷款。
另一方面,许多公司低估了外部因素的价值,如气候数据。它会对很多情况产生影响,如冰淇淋的需求,在需求不太明确的情况下,可以通过个性化推荐,将冰淇淋推荐给那些在天气差时更可能留在家里玩游戏的网络游戏玩家。
因此企业除了利用自己的数据之外,还可以有很多的选择,例如社交网络平台,可以利用用户的在社交网络的足迹预测用户的偏好,又或者季节性数据,利用季节性变化预测用户的未来行为,等等。
机器学习正在很快地从一个很少人关注的技术主题转变为被很多人使用的管理工具。为了避免错失良机,企业现在需要开始设计自己的机器学习项目,以帮助他们为未来的机器学习做好准备。同时,企业需要理解哪些数据是可获得的,缺少的和需要的,现在就可以开始收集它们,以帮助他们更快地获得投资回报。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21