电子商务在大数据时代下的“包容性增长”
随着企业处理的数据量越来越大,数据处理工具的智能化程度越来越高,处理速度越来越快,价格也越来越实惠。大数据分析不仅仅是一种趋势,而是许多大型电子商务公司必不可少的一项工作内容。在大数据时代的背景下,灵活运用各项数据分析手段提炼商业智能已经成为电子商务企业的一项必修课。
所谓的大数据,是需要跨视角、跨媒介、跨行业的海量数据,也可以理解为数据的收集方法。当数据的规模和丰富度达到一定程度,大家才开始提出大数据的概念。那么,电商大数据现状如何?
电子商务在大数据时代下的“包容性增长”
中国电子商务受益于良好的市场环境,政策的扶持,迎来了井喷时代,生态链亦初具雏形。2010年5月21日,第四届APEC电子商务工商联盟论坛就打造电子商务生态产业链、电子商务政策环境与发展趋势、e时代消费、三网合一、无线领域的商业机会、电子商务的竞争格局与投资转型等主题展开讨论。电子商务生态链作为一种新型交易工具,虽然具有平台效应,但其发挥积极外溢效应将有一定前提条件、约束机制。这也要求政府在促进电子商务发展的同时,为电子商务生态链增长提供支持的同时;另外也需要考虑到数字鸿沟可能产生的负面影响。政府应从包容性增长的角度对观察电子商务生态链对区域经济增长、区域福利的效果。
“包容性增长”这一概念最早由亚洲开发银行在2007年首次提出。它的原始意义在于“有效的包容性增长战略需集中于能创造出生产性就业岗位的高增长、能确保机遇平等的社会包容性以及能减少风险,并能给最弱势群体带来缓冲的社会安全网。”最终目的是把经济发展成果最大限度地让普通民众来受益。包容性增长即为倡导机会平等的增长。包容性增长最基本的含义是公平合理地分享经济增长。它涉及平等与公平的问题,包括可衡量的标准和更多的无形因素。
政府应该积极鼓励电子商务运营商开发更多适合减少贫困的业务,促使这些业务更好融入到和谐社会建设中。总之政府、企业、公众应共同探讨如何在大数据时代借助电子商务生态链惠及贫困人口,从而缓解数字鸿沟以及负面影响。
电商从大数据里谋发展必须具备要素
驾驭大数据
数据集往往非常庞大,很难用传统的数据库管理工具进行处理,截至2012年,数据集由几十兆字节至数拍字节的数据组成。这些数据包括访问网页、登陆、在线交易等等。目前数据集的规模在不断增大。企业应使用相应工具对数据进行压缩和筛选,仅展现与特定内容相关的数据。目前一些企业已实施大数据策略,一些企业正在开发或者打算开发大数据。
2、捕捉和存储
这是第一步,大数据改变了业务模式,比如通过捕捉、存储和分析用户在社交媒体上发表的售后体验,可以提高质量,改进服务。企业不仅应捕捉和存储大数据,还应开发和利用大数据,因为只有开发和利用大数据,才能挖掘出大数据蕴藏的巨大价值,特别是应使用专门工具分析和开发杂乱的、非结构化的数据。
3、筛选
了解消费者情绪,优化供应链,去除虚假数据,为此,企业应对基础设施和软件进行投资,运用相应算法处理大数据,并聘请数据科学家完成相应工作。只有对数据进行压缩处理,智能地展现与特定内容相关的数据,才能更好地利用大数据。
4、分析
电子商务企业的规模在不断增大,企业需要对其核心业务数据进行分析,不能再凭感觉或直觉制定关键决策,最好对所有与客户相关的业务数据进行分析,以留住现有客户,吸引他们购买更多的商品,同时羸得更多新客户。
5、提供定制产品和个性化服务
分析和细分市场,根据个人或消费群体的喜好或者消费行为提供富有个性化的产品,比如,营销部门可以收集一些有价值的信息,找出购物者的兴趣所在,然后有针对性地组织一些营销活动,从而增加了企业在竞争中的优势,
电商应着眼情报数据挖掘
除了大数据工具的运用,情报数据也是电商公司真正应该关注的。
所谓的情报数据处理人员,从日常的工作场景来看,出去奔波收集情报的工作占了多数份额。他们会跟上下游供应链,以及进行跨部门沟通。例如,一个采购人员应该去生产线,去分析每家供应商的生产水平如何,优秀的工厂和二线工厂的生产周期区别,哪里的原材料采购价格最低。一般来讲,这样的一条情报能使用一到三年。
虽然数据性不强,但这些情报价值十分高。郝欣诚说得更为直截了当:“讲数据挖掘不如讲情报挖掘,情报挖掘才能够为电商企业提供真正生产力级的支持,如果情报挖掘都没做好,就想把它数字化和量化,有点操之过急。”
结语
现在的电子商务企业,日均能达到十万单的少之又少。在有海量数据积累的基础上,还要有一套优秀的BI系统,而且必须是按公司需求定制,才可能实现大数据。然而,在表面繁华的背后,又有谁知道在销售记录屡创新高的同时,电子商务的利润率是否也得到同步的增长呢?实际上,能够真正实现销量与利润率双增长的电商少之又少,而且在越来越少。因为,不少电商的销售业绩是通过价格战和付出大量促销成本来实现的。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21