网站分析与互联网数据分析挖据的区别
一直以来有不少朋友来信或留言,询问网站分析WA(webAnalysis)与互联网数据分析挖掘的区别。这个问题看上去的确比较纠缠不清,不是因为字面理解,而是因为在当前的互联网行业的具体实践。今天是周末,我百无聊赖之际试图针对该问题做个肤浅的一孔之见,希望能抛砖引玉,接受大家的批评指正;
虽然从字面理解,网站分析WA应该被包容在互联网数据分析挖掘的大范畴里面,但是实际情况却是当前“网站分析WA”已经成了一个非常独立的明确定义的专业名称和专业领域,从而事实上已经与当前的“互联网数据分析挖掘”有了一个明确清晰的界限,所以关注互联网,关注互联网的数据分析应用的人,对于“网站分析 WA”和“互联网数据分析挖掘”都应该了解并清楚知道两者在实践应用上的主要区别。
关于“网站分析WA”的具体详细的介绍和应用场景,大家可以去www.chinawebanalytics.cn, 这是一个私人的博客(网站),但是在当今中国互联网行业实际上起的作用是一个“网站分析WA”门户网站(知识库)的角色,这个作者(博主、站长)就是宋星。从一定程度上说,宋星就是目前中国网站分析WA的代名词。呵呵,所谓时势造英雄,今日稳坐中国网站分析WA江湖头把交椅的宋头领,大约应该感恩这个伟大的互联网时代,感谢命运感谢生活!!!
从我个人的肤浅理解上看,目前的“网站分析WA”核心就是关注分析网站的“趋势、转化与细分”,实现这些核心的手段就是如何科学有效地布点(只有有效打点, 才可以全面记录详细数据),结合目前成熟的一系列分析工具,“网站分析WA”可以进行访客分析(新老客户分析,不同分层分析,等等)、页面分析、转化及结 构分析、流量来源分析等等。个人认为,宋星对于当今国内网站分析WA最大的价值和贡献在于他系统化整理、定义了一批该领域的专业名称、体系化的分析指 标、该领域的系统化的分析思想和思路(实际上起到了类似的行业标准起草者的角色)。
但是,如果我们一定要从“网站分析WA”中发现它与目前“互联网数据分析挖掘”的区别的话,我个人觉得区别体现在以下几个方面:
第一:从分析的焦距来看,“网站分析WA”主要关注分析的是网站的宏观表现,而“互联网数据分析挖掘”既可以分析网站的宏观表现,也可以分析微观表现(细化到具体的某个用户member_id,比如可以预测任何个体的流失率,任何个体的交叉销售可能性等等);
第二,从分析的技术算法看,“互联网数据分析挖掘”囊括了目前所有的数据挖掘算法技术,但是“网站分析WA”似乎很少涉猎挖掘算法,(而更关注对于流量的监控,如何有效监控,如何有效定义指标);
第三,从应用场景来看,“网站分析WA”对于起步阶段的中小型网站,中小型B2C, C2C的应用可以有效提升运营效率,并且对于互联网行业的数据分析师来说都是非常好的入门基础和分析思路借鉴、分析框架参考;而对于大型的互联网行业,大 型的或者比较成熟的B2C, C2C网站而言,“网站分析WA”作为分析思路的价值远远高于其作为具体分析手段的价值,在这些大型或者比较成熟的互联网企业里,“互联网数据分析挖掘” 可能更加容易满足其多样性复杂性的业务分析需求;
第四,从使用的人群来看,“网站分析WA”固然应该被数据分析专业人员掌握,但是其同样也适合来武装互联网行业里的运营人员,运营团队等相关业务团队;而 “互联网数据分析挖掘”更多的是用来武装专职的数据分析人员和分析团队的。我目前打工的东家是中国互联网行业的一家旗舰公司,也是一个著名的行业平台,我 注意到我的业务需求方(运营部门)在日常运营工作中他们自觉不自觉用到的就是“网站分析WA”里所重点关注的诸如流量来源分析,页面结构优化,流量转化漏 斗,等等;
说了这么多,也不知道是否表达清楚,更不知道看官是否明白。其实,但凡文字总结的都是有误导欠准确的,真正的理解和掌握都是无法用文字和语言来总结的,真正的理解和掌握只能是心有灵犀的会心一笑。 遥想当年灵山法会,世尊拈花,众皆不识,唯有迦叶破颜微笑,世尊乃曰:“吾有正法眼藏,涅槃妙心,实相无相,付诸于汝。”此乃教外别传、不立文字、直承当 下之无上法门,后人笼统目之为“禅”。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10