为什么你的分析报告没有被领导赏识
现代应用程序从多个源数控流事件摄取大量实时数据。这些应用程序背后的企业希望利用这些数据造福自身和它的客户,提供更愉快的用户体验、更具个性化的交互服务。
常见的流媒体分析数据来源,如传感器数据、社会提要,计费系统,在线游戏,数字广告平台,连接设备。然而,创造真正的商业价值,你必须通过一个业务组件与应用程序集成流分析结果。组织必须快速采取行动获得的他们见解,否则他们会错过商机。高速数据的流数据分析需要选择有影响力架构,以满足技术和公司目标。
换句话说,分析创建洞察力,但思考”这很有趣!“的结果并没有改善业务流程。你必须采取行动,使用数据收集与分析获取帮助。竞争的激烈和威胁来自现有和非传统商业模式。是不是每个人都对组织使用数据简单的报告或汇总? 流分析结合交易是一个重要的能力。
整合流分析和交易提供一系列显著的好处。例如,应用程序集成到一个数据摄取管道可以支持流分析中用户的交互使用。 这可以使更多的交互式应用程序,提高生命周期价值,提高转化率,优化资源消耗,减少浪费。当开发人员设计把流分析和交易整合到软件结构时,可以利用用较少的,更强大的组件。最后,在流分析的建设构造时,可以为我们带来具有充分特色,强大的应用程序,比建立自己的替代品市场更快。
数据流分析的宏观趋势
采用这种技术的趋势是从批处理转向流分析,日益普及公共和私有的云计算和产生数据周边设备如服饰的增值。
这些动作中的每一个动作都已经进行了一段时间,但现在他们走到了一起,例子包括所有基于快速数据流基础上的个性化、实时计费、实时监控。然而,很少有共识认为有必要构建这些应用程序和技术支持。
首先,我们要清楚我们谈论什么。快速的数据是实时数据,要从移动、社交网络、传感器、设备、互动、观察,和大规模的软件即服务(SaaS)平台提取。
技术支持快速数据流分析是建立在对现场数据进行实时分析的结果上,用于通知actions—e.g分析结果,一个事务运行作为一个持续的过程。 虽然这不是一个业务或技术必要性,每个使用情况下,这是一个规则的改变。在软件需求中,可以建议一个快速的数据解决方案。
通过高性能的数据管理系统的技术可行性
提供廉价的云存储和计算资源
提供用户需求更好、更快、准确的信息
标准的生产流程控制,更倾向于自动化的,连续的, ,而不是大的批处理
体系结构的选择
这些趋势分析创建了新的业务需求和机会,同时也意味着技术人员需要的专业工具来完成工作。选择适当的架构,确保应用程序可以支持流媒体直播数据流分析和交易。
联机分析处理(OLAP)系统专注于存储和报告。 他们可以提供实时摄取和快速报告。然而,这些应用程序通常不支持事务,更将报告和流媒体分析的结果立即返回到应用程序中。如果事务是必需的,他们会卸到其他数据库系统。
流媒体系统,其中可能包括连续事件处理(CEP)系统,关注连续报道。大量的流媒体产品分布式并行查询引擎依赖于一个统一的编程框架,可以处理存储数据(使用批处理)和流数据(使用流处理)。 然而,数据持久性卸到其他数据库系统,增加了复杂性和成本。
操作数据库系统专注于应用程序交互。这些在线事务处理(OLTP)产品提供存储和查询语义经典的面向请求-响应的应用程序,需要创建、读取、更新和删除记录。 然而,分析后卸到其他数据库系统,这些系统不能自动适应进行分析。
集成解决方案结合这些框架的优点,是最好的选择:他们提供的数据长期存储和分析,使流分析定制,并提供千上万的用户所需的低延迟应用程序。
VoltDB,例如,提供了一个熟悉的关系数据模型,支持交互式应用程序,实时数据流分析操作的应用程序需要管理状态和执行每个事件的事务。VoltDB是Forrester所说的一个例子,translytical数据库Gartner混合事务/分析处理系统(HTAP)的解决方案。它支持需要更新,读取,和写入数据的应用程序,而不是简单地记录收集的批次报告。流分析和交易的,它不需要复杂的依赖于其他系统,如Apache ZKSC堆栈或辅助数据库。
本质上:在快速数据应用中, 没有分析行动的几乎没有价值。 如果你正在构建应用程序,请确保分析使业务系统能够通过使用收集的数据来传递最大价值,而不仅仅是将其填充在日志文件或其它数据库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30