网站分析WA与互联网数据分析挖据的区别
一直以来有不少朋友来信或留言,询问网站分析WA(web analysis)与互联网数据分析挖掘的区别。这个问题看上去的确比较纠缠不清,不是因为字面理解,而是因为在当前的互联网行业的具体实践。今天是周末,我百无聊赖之际试图针对该问题做个肤浅的一孔之见,一方面希望能抛砖引玉,接受大家的批评指正;另一方面也算是对这个周末光阴有个交代,我在这个世界混吃混喝,总是要奉献点什么的吧。
虽然从字面理解,网站分析WA应该被包容在互联网数据分析挖掘的大范畴里面,但是实际情况却是当前“网站分析WA”已经成了一个非常独立的明确定义的专业名称和专业领域,从而事实上已经与当前的“互联网数据分析挖掘”有了一个明确清晰的界限,所以关注互联网,关注互联网的数据分析应用的人,对于“网站分析WA”和“互联网数据分析挖掘”都应该了解并清楚知道两者在实践应用上的主要区别。
在当今中国互联网行业实际上起的作用是一个“网站分析WA”门户网站(知识库)的角色,这个作者(博主、站长)就是宋星。从一定程度上说,宋星就是目前中国网站分析WA的代名词。呵呵,所谓时势造英雄,今日稳坐中国网站分析WA江湖头把交椅的宋头领,大约应该感恩这个伟大的互联网时代,感谢命运感谢生活!!!
从我个人的肤浅理解上看,目前的“网站分析WA”核心就是关注分析网站的“趋势、转化与细分”,实现这些核心的手段就是如何科学有效地布点(只有有效打点,才可以全面记录详细数据),结合目前成熟的一系列分析工具,“网站分析WA”可以进行访客分析(新老客户分析,不同分层分析,等等)、页面分析、转化及结构分析、流量来源分析,等等。个人认为,宋星对于当今国内网站分析WA最大的价值和贡献在于他系统化整理、定义了一批该领域的专业名称、体系化的分析指标、该领域的系统化的分析思想和思路(实际上起到了类似的行业标准起草者的角色)。
但是,如果我们一定要从“网站分析WA”中发现它与目前“互联网数据分析挖掘”的区别的话,我个人觉得区别体现在以下几个方面(我是个井底之蛙,冒昧做个肤浅小结,期待各位指正):
第一:从分析的焦距来看,“网站分析WA”主要关注分析的是网站的宏观表现,而“互联网数据分析挖掘”既可以分析网站的宏观表现,也可以分析微观表现(细化到具体的某个用户member_id,比如可以预测任何个体的流失率,任何个体的交叉销售可能性,等等);
第二,从分析的技术算法看,“互联网数据分析挖掘”囊括了目前所有的数据挖掘算法技术,但是“网站分析WA”似乎很少涉猎挖掘算法,(而更关注对于流量的监控,如何有效监控,如何有效定义指标);
第三,从应用场景来看,“网站分析WA”对于起步阶段的中小型网站,中小型B2C, C2C的应用可以有效提升运营效率,并且对于互联网行业的数据分析师来说都是非常好的入门基础和分析思路借鉴、分析框架参考;而对于大型的互联网行业,大型的或者比较成熟的B2C, C2C网站而言,“网站分析WA”作为分析思路的价值远远高于其作为具体分析手段的价值,在这些大型或者比较成熟的互联网企业里,“互联网数据分析挖掘”可能更加容易满足其多样性复杂性的业务分析需求;
第四,从使用的人群来看,“网站分析WA”固然应该被数据分析专业人员掌握,但是其同样也适合来武装互联网行业里的运营人员,运营团队等相关业务团队;而“互联网数据分析挖掘”更多的是用来武装专职的数据分析人员和分析团队的。我目前打工的东家是中国互联网行业的一家旗舰公司,也是一个著名的行业平台,我注意到我的业务需求方(运营部门)在日常运营工作中他们自觉不自觉用到的就是“网站分析WA”里所重点关注的诸如流量来源分析,页面结构优化,流量转化漏斗,等等;
说了这么多废话,语无伦次,颠三倒四,也不知道是否表达清楚,更不知道看官是否明白。其实,但凡文字总结的都是有误导欠准确的,真正的理解和掌握都是无法用文字和语言来总结的,真正的理解和掌握只能是心有灵犀的会心一笑。遥想当年灵山法会,世尊拈花,众皆不识,唯有迦叶破颜微笑,世尊乃曰:“吾有正法眼藏,涅槃妙心,实相无相,付诸于汝。”此乃教外别传、不立文字、直承当下之无上法门,后人笼统目之为“禅”。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13