这是一篇帮你快速掌握数据分析的文章
1、为什么要注重数据分析?
我们为什么要注重数据分析,对此我的想法是:
A、有效避免拍脑袋、主观臆想;
B、为决策提供支撑,更能说服人;
C、通过数据分析,可以看到决策的效果、问题以及未来应该如何做。
知乎用户@绡页的答案很简单,但却一语中的:
“知错能改,善莫大焉”——可是错在哪里,数据分析告诉你。
“运筹帷幄之中,决胜千里之外”——怎么做好“运筹”,数据分析告诉你。
“以往鉴来,未卜先知”——怎么发现历史的规律以预测未来,数据分析告诉你。
2、数据分析的逻辑
一般而言,数据分析的逻辑是:先梳理一件事的目的、流程和逻辑(实际上也就是梳理清楚业务逻辑),界定出关键用户行为和数据,分析数据找到问题,思考解决方案。
比如某电商做了一个专题活动,但效果却并不理想,现在需要寻找原因,那么它的逻辑就大致是:首先梳理用户消费流程:专题活动页面——商品页面——下单购买,或者是通过搜索/导航——商品页面——下单购买;然后界定出关键的用户行为:打开专题页或通过搜索导航、进入商品页面、点击购买、下单等;再然后确认是用户的哪个行为数据是否有异常的地方,也就是找到问题所在;最后就是思考怎样去解决这个问题。
3、数据分析的方法
在数据来源正确的前提下,数据分析的方法可以分为定性分析和定量分析。
定性分析,就是对事物的性质作出判断,究竟它“是什么”。比如最近某一个产品的用户活跃度大幅度提升,而结合该款产品最近的更新情况可知,用户活跃度之所以大幅提升是该款产品上线了一个新功能导致的。
定量分析,是指对事情的数量做出统计,衡量它“有多少”。比如产品优化了登录注册流程,这一优化的效果是怎样的,带来了多少新注册用户,增长率是多少。
在《增长黑客》中有一段对数据分析的精彩论述,其中也有提到定性分析和定量分析的关系:
数据分析就是定性分析和定量分析的相互结合,不断验证的过程。提出假设、设计方案、分析数据、验证或推翻假设,最终抽丝剥茧,逐渐接近真相。数据是相互印证的,彼此之间有如通过无形的网络纵横连接,只需轻轻按动其中一个就会驱使另外一个或一组产生变化。通过数据分析得出的结论,应当能反推出其他数据,或是与其他数据分析得出的结果相一致。例如,假设某日在线订餐网站的数据量猛升,猜测与天气阴雨、用户窝在办公室或家中不愿出门有关,那么就应当去翻查近期之内网站在阴雨天期间的访问数据,看是否出现了类似的攀升。
4、数据分析的流程
就我自己亲身工作经历而言,数据分析的流程应该是:
明确目的——拉取数据——处理数据——寻找异常点——得出结论——验证结论
明确目的:清楚并理解此次分析的目的是什么,比如寻找某地城市的流量锐减的原因,这个很多时候是建立在你对业务逻辑/流程的理解,如果不了解的话,你所做的不是数据分析,顶多就是个数据整理的工作。而这就要求先确认分析维度,包括拉取什么数据、核心变量是什么、核心变量是否受到其他外界因素的影响(是否有其他需求上线?能否取到准确来源的数据?时间范围的数据是否出现数据问题?)
拉取数据:很多时候我们需要自己动手从数据库里拉取相关数据,在拉取数据时,需要注意以下几点:能在数据库里处理的,就不要拉到excel中处理;语句是否完整:引号、分号、group by;条件限制是否准确:时间、平台、页面、类别、是否去重、是否清洗;语句逻辑是否正确;所取时间段数据是否不受外界因素影响等等。
处理数据:保存拉取出来的数据作为原始数据,保留相应的语句;掌握常用函数(Vlookup、sum、Average、if、If error);当你认为所需要做的事情特别繁琐时,找人问;或者将你的问题清楚表述,然后百度,你要相信,你所遇到的问题别人很有可能早就遇到过。
至于寻找异常点、得出结论这两步,则是需要结合具体的业务才能进行,而验证结论,则是需要从其他维度去验证一下结论的可靠性,我觉得找老大review是最简单最暴力的一种方式。
5、其他
A、如我们所知,对待数据一直以来都有不同的态度,有的人做任何决策都希望能够有数据作为支撑,同样有的人追求的是对人性的洞察,追求的是对未来的预见。在我的理解范围内,这两者本质上并没有直接对立的成分在,没必要将两者对立起来,我们唯一要关注的东西就是实现目的。在关注目的/结果的时候,我们就会很清晰的明了,不管是数据流还是人性派,都只是手段,清楚目的所在,就不会轻易因为数据不好看就放弃某个决策,也不会固执坚持某个观点。
B、关于数据敏感:很多人在我面前说自己对数据敏感时,我每次都不以为意。因为我觉得数据敏感这个实际上是个伪概念,它更多的是一种(多接触数据之后的)结果,而非能力,尤其不是那种靠天赋的能力。如果非要说是一种能力,在我的理解范围内,我觉得数据敏感是一种建立在对业务足够理解的前提下,并且可以通过足够的训练获得的能力。没错,我想说的时候:不谈对业务的理解,只谈数据,我觉得这是在耍流氓。
C、数据的根本用途就是提供决策依据,减少不确定性。现在人们的决策,大多数是靠感觉,靠跟风,靠个人经验,只有很少部分是客观数据分析。数据,提供了一种更为可靠的决策依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30