大数据时代下,百货行业如何革命
进入互联网、大数据时代,中国百货行业发生了翻天覆地变化,以前“一铺养三代”,现在街上到处都是旺铺出兑,更不用说各种百货商场的状况了。究其原因,中国百货行业外有国内经济增长减速、社会零售总额增长放缓以及网络购物发展的困境,内有相较购物中心自营能力不足、千店一面同质化竞争严重问题,深处“内忧外患”之中。
革命的目的,是为了让一切变好,是为了过得更好。大数据时代,革命的途径,就是怎么利用大数据。我们知道,很多百货公司纷纷走上了自我革命的道路,成为大数据应用的探索者:王府井百货推出了“王府井大数据平台”、新世界百货利用VIP数据进行圈层营销,天虹百货打造“天虹微店’开启全渠道购物,银泰百货“全场铺设WIFI”等等。
恰好,前些天帆软传说哥与该行业的某集团的IT负责人进行了一些交流,了解到他们所做变革,毕竟传说哥在数据展示和分析圈混了几年,今天就抛砖引玉,分享一些自己的见解,商超行业如何应用大数据。
对于百货商超公司而言,要用收集、应用什么数据?我想100%的人都会不假思索说用户标签和交易行为,也就是用户画像了。的确是的,像百度推广、腾讯广点通、LBS广告、京东猜你喜欢等等,广告都是智能的,这都是对用户标签、行为数据的分析和追踪,然后推送给他们合适的广告信息,这样的广告往往效果最好,因为切中了用户当前或者潜在的需求。
第二个问题,企业为什么要用大数据呢?为了挣钱嘛,为了挣更多的钱嘛。上面讲到大数据对于用户的价值,确实能推动很多产品的销售,带来很多销售额。但这不够啊!传说哥的东家帆软公司,为什么能发展这么快?原因就是帆软是做报表软件和商业智能软件的,该领域市场大,而企业购买这些软件都是为了自身运营。这就引出了第二个大数据的价值,对于企业运营的作用。没有数据的支撑,你很难知道“昨天发生了什么、为什么会发生、今天发生了什么、明天又将发生什么”,也不知道企业战略战术执行如何;有了数据的支撑,业务运转情况一览无遗,工作效率大大提高,管理和决策将更加轻松自然。
大数据时代的革命行动,说透了就是商超百货要做两件事,一个是用户画像系统,一个是企业运营数据分析中心。
首先是用户画像系统。
其核心是用计算机理解的“词语”,去描绘一个人,一般都是用“标签”+“权重”来做用户画像。与用户相关的数据,分为为静态数据和动态数据。静态数据主要是指他的个人标签,属性,比如他的年龄、职业、性别、收入、地区、婚姻状况、爱好、特征、消费能力、消费周期等。动态数据主要是他在商场内留下的行为数据,常见要素是时间、地点、行为,比如消费时间、所买物品、试衣间试了几次衣服等。收集用户数据的方式很多,如会员卡,如卖场wifi等。
当整个画像系统建立起来后,就是这样的一个场景:顾客使用手机在卖场停留的时间,物品的条码扫描情况,商场收集到这些数据,把这些数据上传到云端,就能更好的为顾客做推荐。例如,你喜欢西餐,你在西餐区买什么东西,喜欢什么品牌,在店里两三次的消费习惯等这些数据都会被系统记录下来,通过手机微信以及其它大数据结合以后,就会为你量身定做一套专属于你的一个DM单。现在的情况是所有人收到的DM单都一样,酱油,醋,萝卜,白菜,不管你喜欢不喜欢一股脑都丢给你,以后情况可能就不会是这样了,你喜欢某个品牌,这个品牌也许会通过大数据被“找”出来,单独推送给你,无论你什么时间到那都会有优惠。
其次是企业运营数据中心,也就是数据分析系统,可以准确实时的向领导层、中间管理层反映集团运营状况,如销售情况、库存情况、利润情况、人力资源情况等,辅助管理决策。
同时,业务人员查看卖场营运数据的场地和设备限制问题也将解决,业务人员可以在任何时间,通过内网或外网,在手机,平板等设备上了解实时的卖场营运数据,比如商品销量情况,畅销还是滞销,还有营运的一些基础数据,异常报表类数据。还比如管理人员在巡店的过程中,可以通过手机扫描商品条形码或二维码,就可以从移动端查看到这个商品在我们整个企业每家店的情况,包括他是跟哪个供应商合作,是多少钱的合作,多个批次商品的销售情况,以及一些合作的具体细节。数据分析系统需要ETL工具、BI工具等来建设实现,这里有几个关键点:一是对多源数据、多数据结构的支持,可以进行多数据源关联;二是性能优越,大数据量大并发的情况下扛得住;三是支持多样化的数据展示方式和交互效果,比如图表移动应用等;四是系统的可扩展性强,维护简单,如新需求可以及时响应,或者业务人员可以自己制作报表。
最后,再表述一个观点:任何的改革,都是自上而下推进的,比如商鞅变法,比如海尔的重生,没有上层领导的强力支持,改革就是走走形式,最后无疾而终。
所以商超百货行业要变革,首要是领导层观念的变革,认可时代的变化,认可数据的价值。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21