大数据时代,重要的不是数据
大数据这个词,近几年来被各路人马“爆炒”。各种论坛、会议,言必谈大数据。“大数据”已经成为了商界的“网红”。跟风说上两句“大数据”就似乎是贴上了“时代先锋”的标签。2017年博鳌论坛也未能“免俗”,“大数据”再次现身,不过,这次来了一群天天与大数据打交道人,他们的观点却是——大数据时代,重要的不是数据。
数据是国家基础性战略资源,推动大数据应用,加快传统产业数字化、智能化,做大做强数字经济,将为我国经济转型发展提供新动力。2017年初,工信部编制并正式印发了《大数据产业发展规划(2016-2020年)》,目标到2020年,大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。
数据的价值和应用前景毋庸置疑。在博鳌分论坛上,现场众多企业领袖表示,在大数据的应用模式上,基于用户行为分析、行为理解、行为预测的客户深度洞察,将数据封装为服务,形成对外开放、可商业化的核心能力,将带来商业模式的巨大创新。
新变革:为消费金融打开“数控”大门
大数据的普及需要创新技术的推动,如何把海量数据赋予使用价值,落实到应用场景,充分发挥大数据分析的价值是论坛的焦点。
腾云天下CEO崔晓波认为,数据的价值是能够变成企业决策的艺术。他举了一个案例,2013年他在为某股份制银行的用户做行为分析时,发现这个银行的信用卡高端客户游戏属性很重,便和休闲游戏的公司合作进行联合营销,用积分兑换游戏虚拟币,后来发现用户转化率高得惊人。这样的尝试在“大数据时代”来临之前,是没有人会想到的
“大数据”并不是竞争力,“大数据的有效应用”才是。尤其是在中国消费升级的大潮中,随着消费金融的井喷式增长,如何利用大数据人工智能技术对消费场景、业务渠道、客户群体和风控等进行综合标准的把控,显得尤为重要。
作为中国消费金融的领跑者,平安普惠一直在积极探索大数据在其普惠业务中的应用。平安普惠副总裁兼首席市场官徐汉华分享了企业的实践经验,平安普惠依托自身在消费金融及小微企业金融服务领域累积的丰富经验,借鉴国际消费信贷行业的领先技术,凭借平安集团及第三方平台的大数据智能运用,实现无纸化全线上审批流程,并且利用数据建模、心理测量、人脸识别、微表情、时空地图等反欺诈技术为客户量身绘制信用画像,让更多人更快、更好、更方便地获得金融服务。
最新公布的中国平安集团年报显示,2016年平安普惠的新增贷款量达1,729.19亿元,同比增长257.7%,期末管理贷款余额1,466.40亿元。自开展业务以来,累计借款人总数达到377万,累计贷款量达2,719.97亿元,其中无抵押贷款量1,753.64亿元,有抵押贷款量966.33亿元,信贷损失率控制在低位的单位数。
数据价值已经越来越受重视,特别是在金融企业业务转型时期,基于数据的业务及内部管理优化使得金融领域的大数据应用市场规模在未来几年将以高于整体水平的速度增长。
新价值:破局智能风控,是企业的命门,也是社会责任
我国市场规模大,消费需求旺盛,未来越来越多的数据将被记录和整理,用户的行为信息日益丰富和完善,预测分析必定会成为大数据时代的关键技术。
“数据帮助我们更快地发现现象背后的洞察,可以让我们做更多有价值的事情。”微软全球资深副总裁、微软亚太研发集团主席、微软亚洲研究院院长洪小文说。
在我国,互联网金融行业整体环境和风险水平逐渐趋好,但行业风险仍需防范。而准确的预测分析恰恰能帮助金融机构降低因欺诈、信用违约风险导致的坏账风险,达到有效的“大数据风控”。
利用大数据人工智能技术,用海量冗杂的基础数据建立底层模型,从用户个人的消费和信贷行为中衍生出复杂的变量,最终塑造出高度精细化的风险控制模型,用以评估授信额度和还款能力,合理放贷,规避金融风险,从而促进行业良性发展。由此,数据的新价值被释放。
徐汉华坦言,在海量数据里甄别有效的信息,洞察数据背后的逻辑,采取相应风控手段是对客户和企业负责的一种体现。对于客户,匹配还款能力的授信额度才能避免征信受损,真正给客户带来金融的便利。而对于企业,风控是这个行业赖以生存的根本,只有把控好信贷损失率,才能保证企业持续发展,构建更好的信用环境。
大数据协防金融风险,推动行业的可持续发展,帮助用户理性地选择贷款产品,培养健康的消费金融意识,或为我国金融系统乃至全社会信用体系的建设,提供有益参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31