R语言中的数组和列表
R语言中的数组与其它语言数组类似,它是一种高维的数据结构。维数过高运算会很不方便,所以用的很少,这里介绍是本着不落下任何知识点的目的。万一以后遇到了,虽然不方便,还是可以进行运算的。当然了,矩阵是二维数组,是数组的一种特殊形式。R中的列表是一种特殊的数组,每个元素又可以是一个列表可以含有多个元素,里面可以包含各种数据类型,故功能非常强大。
数组
数组有一个维数向量,可以定义数组的维数,通过array()进行创建数组如下:
> arr <- array(c(1:24),dim = c(2,3,4))
> dim(arr)
[1] 2 3 4
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr)
[1] "array"
以上创建语句,第一个参数表示用1:24作为数组的数据,dim = c(2,3,4)表示数组维数为2x3x4。
我们也可以用下面这种方式定义数组:
> arr1 <- c(1:24)
> dim(arr1) <- c(2,3,4)
> arr1
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr1)
[1] "array"
这种方式就是先指定向量c(1:24)为数组的数据,再指定其维数为2x3x4,最后其类型仍然为"array"。
矩阵的取块,其实与上节讲的矩阵取值一样。比如:
> arr[1,,]
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23
我们可以将数组转化为矩阵,比如我们尝试将arr这个数组转化为矩阵:
a <- as.matrix(arr)
猜测一下,a会长什么样?我们看一下,哈哈!
> a
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
[11,] 11
[12,] 12
[13,] 13
[14,] 14
[15,] 15
[16,] 16
[17,] 17
[18,] 18
[19,] 19
[20,] 20
[21,] 21
[22,] 22
[23,] 23
[24,] 24
> dim(a)
[1] 24 1
竟然是一个24x1的矩阵,没想到吧。
列表
R中用list()创建列表,比如
> li <- list(c(1:3),c('a','b'),c(4:6))
> li
[[1]]
[1] 1 2 3
[[2]]
[1] "a" "b"
[[3]]
[1] 4 5 6
这个列表包含三个元素,分别是c(1:3),c('a','b'),c(4:6),而每个元素又是一个数据集合,我现在要取第一个元素的第三个元素(就是3)
> li[[1]][1]
[1] 1
取第一个元素,就是
> li[1]
[[1]]
[1] 1 2 3
列表的每个元素还是列表,同样说明列表可以嵌套。具体定位到最里层元素就是相应数据类型了:
> class(li[[1]][1])
[1] "integer"
> li[[2]][1]
[1] "a"
> class(li[[2]][1])
[1] "character"
我们可以给列表每个元素取一个名字
> names(li) <- c('a1','a2','a3')
> li
$a1
[1] 1 2 3
$a2
[1] "a" "b"
$a3
[1] 4 5 6
为什么取名字呢,这样我们引用时可以直接利用美元符号“$”+名字‘a1’,’a2‘,‘a3’,而不需要写[[1]]那么麻烦了。
> li$a1
[1] 1 2 3
> li$a2[1]
[1] "a"
其实,给列表起名字还有更方便之处,这才是最终目的:可以在绑定数据后,直接引用列表元素名即可。
绑定列表用attach()
> attach(li)
然后,就可以直接引用列表元素名了。
> a1
[1] 1 2 3
> a2[2]
[1] "b"
关于R语言中的数组和列表(主要是列表)用法很灵活多样,在以后我们会有实战应用会用到。这次,大家把今天介绍的好好练习就好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30