R语言中的数组和列表
R语言中的数组与其它语言数组类似,它是一种高维的数据结构。维数过高运算会很不方便,所以用的很少,这里介绍是本着不落下任何知识点的目的。万一以后遇到了,虽然不方便,还是可以进行运算的。当然了,矩阵是二维数组,是数组的一种特殊形式。R中的列表是一种特殊的数组,每个元素又可以是一个列表可以含有多个元素,里面可以包含各种数据类型,故功能非常强大。
数组
数组有一个维数向量,可以定义数组的维数,通过array()进行创建数组如下:
> arr <- array(c(1:24),dim = c(2,3,4))
> dim(arr)
[1] 2 3 4
> arr
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr)
[1] "array"
以上创建语句,第一个参数表示用1:24作为数组的数据,dim = c(2,3,4)表示数组维数为2x3x4。
我们也可以用下面这种方式定义数组:
> arr1 <- c(1:24)
> dim(arr1) <- c(2,3,4)
> arr1
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> class(arr1)
[1] "array"
这种方式就是先指定向量c(1:24)为数组的数据,再指定其维数为2x3x4,最后其类型仍然为"array"。
矩阵的取块,其实与上节讲的矩阵取值一样。比如:
> arr[1,,]
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23
我们可以将数组转化为矩阵,比如我们尝试将arr这个数组转化为矩阵:
a <- as.matrix(arr)
猜测一下,a会长什么样?我们看一下,哈哈!
> a
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
[11,] 11
[12,] 12
[13,] 13
[14,] 14
[15,] 15
[16,] 16
[17,] 17
[18,] 18
[19,] 19
[20,] 20
[21,] 21
[22,] 22
[23,] 23
[24,] 24
> dim(a)
[1] 24 1
竟然是一个24x1的矩阵,没想到吧。
列表
R中用list()创建列表,比如
> li <- list(c(1:3),c('a','b'),c(4:6))
> li
[[1]]
[1] 1 2 3
[[2]]
[1] "a" "b"
[[3]]
[1] 4 5 6
这个列表包含三个元素,分别是c(1:3),c('a','b'),c(4:6),而每个元素又是一个数据集合,我现在要取第一个元素的第三个元素(就是3)
> li[[1]][1]
[1] 1
取第一个元素,就是
> li[1]
[[1]]
[1] 1 2 3
列表的每个元素还是列表,同样说明列表可以嵌套。具体定位到最里层元素就是相应数据类型了:
> class(li[[1]][1])
[1] "integer"
> li[[2]][1]
[1] "a"
> class(li[[2]][1])
[1] "character"
我们可以给列表每个元素取一个名字
> names(li) <- c('a1','a2','a3')
> li
$a1
[1] 1 2 3
$a2
[1] "a" "b"
$a3
[1] 4 5 6
为什么取名字呢,这样我们引用时可以直接利用美元符号“$”+名字‘a1’,’a2‘,‘a3’,而不需要写[[1]]那么麻烦了。
> li$a1
[1] 1 2 3
> li$a2[1]
[1] "a"
其实,给列表起名字还有更方便之处,这才是最终目的:可以在绑定数据后,直接引用列表元素名即可。
绑定列表用attach()
> attach(li)
然后,就可以直接引用列表元素名了。
> a1
[1] 1 2 3
> a2[2]
[1] "b"
关于R语言中的数组和列表(主要是列表)用法很灵活多样,在以后我们会有实战应用会用到。这次,大家把今天介绍的好好练习就好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29