Python变量类型
变量是保存存储值的内存位置。也就是说,当创建一个变量时,可以在内存中保留一些空间。
基于变量的数据类型,解释器分配内存并决定可以存储在保留的存储器中的内容。 因此,通过为变量分配不同的数据类型,可以在这些变量中存储的数据类型为整数,小数或字符等等。
将值分配给变量
在Python中,变量不需要明确的声明类型来保留内存空间。当向变量分配值时,Python会自动发出声明。 等号(=)用于为变量赋值。
=运算符左侧的操作数是变量的名称,而=运算符右侧的操作数是将在存储在变量中的值。 例如 -
#!/usr/bin/python3counter=100# 一个整型数miles=999.99# 一个浮点数name="Maxsu"# 一个字符串site_url="http://www.yiibai.com"# 一个字符串print(counter)print(miles)print(name)print(site_url)
这里,100,999.99和“Maxsu”分别是分配给counter,miles和name变量的值。执行上面代码将产生以下结果 -
100 999.99 Maxsu http://www.yiibai.com
Shell
多重赋值
Python允许同时为多个变量分配单个值。
例如 -
a=b=c=1
这里,创建一个整数对象,其值为1,并且所有三个变量都分配给相同的内存位置。还可以将多个对象分配给多个变量。 例如 -
a,b,c=10,20,"maxsu"
这里,将两个值为10和20的整数对象分别分配给变量a和b,并将一个值为“maxsu”的字符串对象分配给变量c。
标准数据类型
存储在内存中的数据可以是多种类型。 例如,一个人的年龄可存储为一个数字值,他的地址被存储为字母数字字符串。 Python具有各种标准数据类型,用于定义可能的操作以及每个标准数据类型的存储方法。
Python有五种标准数据类型 -
1.数字
2.字符串
3.列表
4.元组
5.字典
1.Python数字
数字数据类型存储数字值。当为其分配值时,将创建数字对象。 例如 -
var1=10var2=20
可以使用del语句删除对数字对象的引用。del语句的语法是 -
delvar1[,var2[,var3[....,varN]]]]
可以使用del语句删除单个对象或多个对象。
例如 -
delvardelvar_a,var_b
Python支持三种不同的数值类型 -
int(有符号整数)
float(浮点实值)
complex(复数)
Python3中的所有整数都表示为长整数。 因此,长整数没有单独的数字类型。
例子
以下是一些数字示例 -
复数是由x + yj表示的有序对的实数浮点数组成,其中x和y是实数,j是虚数单位。
2.Python字符串
Python中的字符串被标识为在引号中表示的连续字符集。Python允许双引号或双引号。 可以使用片段运算符([]和[:])来获取字符串的子集(子字符串),其索引从字符串开始处的索引0开始,并且以-1表示字符串中的最后一个字符。
加号(+)是字符串连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
str = 'yiibai.com'
print ('str = ', str) # Prints complete string
print ('str[0] = ',str[0]) # Prints first character of the string
print ('str[2:5] = ',str[2:5]) # Prints characters starting from 3rd to 5th
print ('str[2:] = ',str[2:]) # Prints string starting from 3rd character
print ('str[-1] = ',str[-1]) # 最后一个字符,结果为:'!'
print ('str * 2 = ',str * 2) # Prints string two times
print ('str + "TEST" = ',str + "TEST") # Prints concatenated string
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_str1.py
str = yiibai.com
str[0] = y
str[2:5] = iba
str[2:] = ibai.com
str[-1] = m
str * 2 = yiibai.comyiibai.com
str + "TEST" = yiibai.comTEST
F:\worksp\python>
Shell
2.Python列表
列表是Python复合数据类型中最多功能的。 一个列表包含用逗号分隔并括在方括号([])中的项目。在某种程度上,列表类似于C语言中的数组。它们之间的区别之一是Python列表的所有项可以是不同的数据类型,而C语言中的数组只能是同种类型。
存储在列表中的值可以使用切片运算符([]和[])来访问,索引从列表开头的0开始,并且以-1表示列表中的最后一个项目。 加号(+)是列表连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
list = [ 'yes', 'no', 786 , 2.23, 'minsu', 70.2 ]
tinylist = [100, 'maxsu']
print ('list = ', list) # Prints complete list
print ('list[0] = ',list[0]) # Prints first element of the list
print ('list[1:3] = ',list[1:3]) # Prints elements starting from 2nd till 3rd
print ('list[2:] = ',list[2:]) # Prints elements starting from 3rd element
print ('list[-3:-1] = ',list[-3:-1])
print ('tinylist * 2 = ',tinylist * 2) # Prints list two times
print ('list + tinylist = ', list + tinylist) # Prints concatenated lists
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_list.py
list = ['yes', 'no', 786, 2.23, 'minsu', 70.2]
list[0] = yes
list[1:3] = ['no', 786]
list[2:] = [786, 2.23, 'minsu', 70.2]
list[-3:-1] = [2.23, 'minsu']
tinylist * 2 = [100, 'maxsu', 100, 'maxsu']
list + tinylist = ['yes', 'no', 786, 2.23, 'minsu', 70.2, 100, 'maxsu']
F:\worksp\python>
Shell
3.Python元组
元组是与列表非常类似的另一个序列数据类型。元组是由多个值以逗号分隔。然而,与列表不同,元组被括在小括号内(())。
列表和元组之间的主要区别是 - 列表括在括号([])中,列表中的元素和大小可以更改,而元组括在括号(())中,无法更新。元组可以被认为是只读列表。 例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_tuple.py
tuple = ( 'maxsu', 786 , 2.23, 'yiibai', 70.2 )
tinytuple = (999.0, 'maxsu')
# tuple[1] = 'new item value' 不能这样赋值
print ('tuple = ', tuple) # Prints complete tuple
print ('tuple[0] = ', tuple[0]) # Prints first element of the tuple
print ('tuple[1:3] = ', tuple[1:3]) # Prints elements starting from 2nd till 3rd
print ('tuple[-3:-1] = ', tuple[-3:-1]) # 输出结果是什么?
print ('tuple[2:] = ', tuple[2:]) # Prints elements starting from 3rd element
print ('tinytuple * 2 = ',tinytuple * 2) # Prints tuple two times
print ('tuple + tinytuple = ', tuple + tinytuple) # Prints concatenated tuple
Python
将上面代码保存到 variable_types_tuple.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_tuple.py
tuple = ('maxsu', 786, 2.23, 'yiibai', 70.2)
tuple[0] = maxsu
tuple[1:3] = (786, 2.23)
tuple[-3:-1] = (2.23, 'yiibai')
tuple[2:] = (2.23, 'yiibai', 70.2)
tinytuple * 2 = (999.0, 'maxsu', 999.0, 'maxsu')
tuple + tinytuple = ('maxsu', 786, 2.23, 'yiibai', 70.2, 999.0, 'maxsu')
F:\worksp\python>
Shell
以下代码对于元组无效,因为尝试更新元组,但是元组是不允许更新的。类似的情况可能与列表 -
#!/usr/bin/python3
tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 )
list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
tuple[2] = 1000 # 无法更新值,程序出错
list[2] = 1000 # 有效的更新,合法
Python
Python字典
Python的字典是一种哈希表类型。它们像Perl中发现的关联数组或散列一样工作,由键值对组成。字典键几乎可以是任何Python数据类型,但通常为了方便使用数字或字符串。另一方面,值可以是任意任意的Python对象。
字典由大括号({})括起来,可以使用方括号([])分配和访问值。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_dict.py
dict = {}
dict['one'] = "This is one"
dict[2] = "This is my"
tinydict = {'name': 'maxsu', 'code' : 1024, 'dept':'IT Dev'}
print ("dict['one'] = ", dict['one']) # Prints value for 'one' key
print ('dict[2] = ', dict[2]) # Prints value for 2 key
print ('tinydict = ', tinydict) # Prints complete dictionary
print ('tinydict.keys() = ', tinydict.keys()) # Prints all the keys
print ('tinydict.values() = ', tinydict.values()) # Prints all the values
Python
将上面代码保存到 variable_types_dict.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_dict.py
dict['one'] = This is one
dict[2] = This is my
tinydict = {'name': 'maxsu', 'code': 1024, 'dept': 'IT Dev'}
tinydict.keys() = dict_keys(['name', 'code', 'dept'])
tinydict.values() = dict_values(['maxsu', 1024, 'IT Dev'])
Shell
字典中的元素没有顺序的概念。但是说这些元素是“乱序”是不正确的; 它们是无序的。
数据类型转换
有时,可能需要在内置类型之间执行转换。要在类型之间进行转换,只需使用类型名称作为函数即可。
有以下几种内置函数用于执行从一种数据类型到另一种数据类型的转换。这些函数返回一个表示转换值的新对象。它们分别如下所示 -
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30