python 垃圾收集机制的实例详解
这篇文章主要介绍了python垃圾收集机制的实例详解的相关资料,希望通过本文能帮助大家理解这部分内容,需要的朋友可以参考下
pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括
Python最主要和绝大多数时候用的都是引用计数,每一个PyObject定义如下:
#define PyObject_HEAD \
Py_ssize_t ob_refcnt; \
struct _typeobject *ob_type;
typedef struct _object {
PyObject_HEAD
} PyObject;
每个pyobject都有一个refcnt来记录他们自己的引用数,一旦引用数为0,就进行回收
引用计数的优点在于实时性,一旦没有其他对象引用了,就能立马进行回收,看起来十分不错,但为什么好多语言都没有采用该方案,因为引用计数有一个致命的缺点,无法解决循环引用问题,比如:
a = []
b = []
a.append(b)
b.append(a)
其实并没有其他变量引用a,b那么他们实际上应该被回收掉,但由于相互引用的关系,他们的引用数都为1,无法被回收。
在python中,相互引用的问题仅仅存在与容器里面,例如list,dictionary,class,instance。为了解决该问题,python引入了标记——清除和分代——回收另外两种机制。
事实上,python中的容器并没有之前讲的那么简单,在pyobject_head之前,还有一个PyGC_head,也就是专门用来处理容器的循环引用问题的。
typedef union _gc_head {
struct {
union _gc_head *gc_next;
union _gc_head *gc_prev;
Py_ssize_t gc_refs;
} gc;
long double dummy; /* force worst-case alignment */
} PyGC_Head;
所有创建的容器类的对象都会被记录到可收集对象链表中,通过上面的结构我们可以知道其实是构建了一个双向链表,这样我们就可以来跟踪所有可能产生循环引用的情况了。而像int,string等简单的不是容器类型的,只要引用技术为0,就会被回收。但是如果频繁的malloc和free会严重影响效率,所以python采用了大量的对象池来提高效率。
标记——清除包括了垃圾回收的两个方面:(1)寻找可以回收的对象(2)回收对象,python中的标记会从root object开始,遍历所有容器类对象,查找出可以通过引用来到达的一些对象,把他们放到由reachable维护的链表中,对于不能到达的放到unbreachable维护的链表中,此过程结束之后,对unreachable里面的元素进行回收即可。
那么如何对应之前循环引用的情况呢?python里面会产生一个有效的引用数,存在gc.gc_refs里面,像上面的a,b真实引用数为1,但有效的引用数为0(循环中的引用数都减1),由于不能直接改pyobjec里面的refcnt,否则会产生一系列问题,我们可以将有效的引用数记到gc.gc_refs里面,那么a,b 的真实有效引用数都为0,所以他们可以被回收。
下面是另外一种情况:
a = []
b = []
c = a
a.append(b)
b.append(a)
这里ab也是循环引用,但是多了c来引用a,通过计算循环中的有效引用计数可得a的引用数为1,b的引用数为0,看起来b应该被回收,但实际上因为a是不可被回收的,a又引用了b,所以b也会被放入在reachable链表中,不被回收,其gc.gc_refs还是会被置1的。
另外一种分代回收,是说内存中有的对象会频繁的malloc和free,有的则比较长久,如果一个对象经过多次垃圾收集和清除之后还存在的话,那么我们就可以认为,这个对象是长时间有用的,不用去频繁检测回收它。python中分为3代,分别是3个链表维护,0代最多维护700个对象,1代10个,2代10个,如果对象超过这个数了,就会调用标记——清除算法来进行回收。可以想到,0代的对象经过一段时间后会到1代2代中去,然后对它们的检测回收会相比于0代的不那么频繁了
要注意的是,python主要的机制还是引用技术,标记——清除和分代收集只是为了弥补引用计数的缺点而添加的,也就是说,后两者基本只在容器类的循环引用上能发挥作用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19