Python 异常处理实例详解
一、什么是异常?
异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。
一般情况下,在Python无法正常处理程序时就会发生一个异常。
异常是Python对象,表示一个错误。
当Python脚本发生异常时我们需要捕获处理它,否则程序会终止执行。
二、异常处理
捕捉异常可以使用try/except语句。
try/except语句用来检测try语句块中的错误,从而让except语句捕获异常信息并处理。
如果你不想在异常发生时结束你的程序,只需在try里捕获它。
异常语法:
以下为简单的try....except...else的语法:
try的工作原理是,当开始一个try语句后,python就在当前程序的上下文中作标记,这样当异常出现时就可以回到这里,try子句先执行,接下来会发生什么依赖于执行时是否出现异常。
如果当try后的语句执行时发生异常,python就跳回到try并执行第一个匹配该异常的except子句,异常处理完毕,控制流就通过整个try语句(除非在处理异常时又引发新的异常)。
如果在try后的语句里发生了异常,却没有匹配的except子句,异常将被递交到上层的try,或者到程序的最上层(这样将结束程序,并打印缺省的出错信息)。
如果在try子句执行时没有发生异常,python将执行else语句后的语句(如果有else的话),然后控制流通过整个try语句。
异常处理实例1:
下面是简单的例子,它打开一个文件,在该文件中的内容写入内容,且并未发生异常:
try:
fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
except IOError:
print "Error: can\'t find file or read data"
else:
print "Written content in the file successfully"
fh.close()
以上程序输出结果:
异常处理实例2:
下面是简单的例子,它打开一个文件,在该文件中的内容写入内容,但文件没有写入权限,发生了异常:
try:
fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
except IOError:
print "Error: can\'t find file or read data"
else:
print "Written content in the file successfully"
以上程序输出结果:
三、使用except而不带任何异常类型
你可以不带任何异常类型使用except,如下实例:
以上方式try-except语句捕获所有发生的异常。但这不是一个很好的方式,我们不能通过该程序识别出具体的异常信息。因为它捕获所有的异常。
四、使用except而带多种异常类型
你也可以使用相同的except语句来处理多个异常信息,如下所示:
五、try-finally 语句
try-finally 语句无论是否发生异常都将执行最后的代码。
注意:你可以使用except语句或者finally语句,但是两者不能同时使用。else语句也不能与finally语句同时使用
try-finally用法实例:
try:
fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
finally:
print "Error: can\'t find file or read data"
如果打开的文件没有可写权限,输出如下所示:
同样的例子也可以写成如下方式:
try:
fh = open("testfile", "w")
try:
fh.write("This is my test file for exception handling!!")
finally:
print "Going to close the file"
fh.close()
except IOError:
print "Error: can\'t find file or read data"
当在try块中抛出一个异常,立即执行finally块代码。
finally块中的所有语句执行后,异常被再次提出,并执行except块代码。
参数的内容不同于异常。
六、异常的参数
一个异常可以带上参数,可作为输出的异常信息参数。
你可以通过except语句来捕获异常的参数,如下所示:
变量接收的异常值通常包含在异常的语句中。在元组的表单中变量可以接收一个或者多个值。
元组通常包含错误字符串,错误数字,错误位置。
以下为单个异常的实例:
# Define a function here.
def temp_convert(var):
try:
return int(var)
except ValueError, Argument:
print "The argument does not contain numbers\n", Argument
# Call above function here.
temp_convert("xyz");
以上程序执行结果如下:
使用raise触发异常:
我们可以使用raise语句自己触发异常
raise语法格式如下:
语句中Exception是异常的类型(例如,NameError)参数是一个异常参数值。该参数是可选的,如果不提供,异常的参数是"None"。
最后一个参数是可选的(在实践中很少使用),如果存在,是跟踪异常对象。
raise用法实例:
一个异常可以是一个字符串,类或对象。 Python的内核提供的异常,大多数都是实例化的类,这是一个类的实例的参数。
定义一个异常非常简单,如下所示:
注意:为了能够捕获异常,"except"语句必须有用相同的异常来抛出类对象或者字符串。
例如我们捕获以上异常,"except"语句如下所示:
七、用户自定义异常实例
通过创建一个新的异常类,程序可以命名它们自己的异常。异常应该是典型的继承自Exception类,通过直接或间接的方式。
以下为与RuntimeError相关的实例,实例中创建了一个类,基类为RuntimeError,用于在异常触发时输出更多的信息。
在try语句块中,用户自定义的异常后执行except块语句,变量 e 是用于创建Networkerror类的实例。
在你定义以上类后,你可以触发该异常,如下所示:
附:python标准异常
BaseExceptiona:所有异常的基类
SystemExitb python:解释器请求退出
KeyboardInterruptc:用户中断执行(通常是输入^C)
Exceptiond:常规错误的基类
StopIteratione:迭代器没有更多的值
GeneratorExita:生成器(generator)发生异常来通知退出
SystemExith:Python 解释器请求退出
StandardErrorg:所有的内建标准异常的基类
ArithmeticErrord:所有数值计算错误的基类
FloatingPointErrord:浮点计算错误
OverflowError:数值运算超出最大限制
ZeroDivisionError:除(或取模)零 (所有数据类型)
AssertionErrord:断言语句失败
AttributeError:对象没有这个属性
EOFError:没有内建输入,到达EOF 标记
EnvironmentErrord:操作系统错误的基类
IOError:输入/输出操作失败
OSErrord:操作系统错误
WindowsErrorh Windows:系统调用失败
ImportError:导入模块/对象失败
KeyboardInterruptf:用户中断执行(通常是输入^C)
LookupErrord:无效数据查询的基类
IndexError:序列中没有没有此索引(index)
KeyError:映射中没有这个键
MemoryError:内存溢出错误(对于Python 解释器不是致命的)
NameError:未声明/初始化对象 (没有属性)
UnboundLocalErrorh:访问未初始化的本地变量
ReferenceErrore:弱引用(Weak reference)试图访问已经垃圾回收了的对象
RuntimeError:一般的运行时错误
NotImplementedErrord:尚未实现的方法
SyntaxError:Python 语法错误
IndentationErrorg:缩进错误
TabErrorg:Tab 和空格混用
SystemError 一般的解释器系统错误
TypeError:对类型无效的操作
ValueError:传入无效的参数
UnicodeErrorh:Unicode 相关的错误
UnicodeDecodeErrori:Unicode 解码时的错误
UnicodeEncodeErrori:Unicode 编码时错误
UnicodeTranslateErrorf:Unicode 转换时错误
Warningj:警告的基类
DeprecationWarningj:关于被弃用的特征的警告
FutureWarningi:关于构造将来语义会有改变的警告
OverflowWarningk:旧的关于自动提升为长整型(long)的警告
PendingDeprecationWarningi:关于特性将会被废弃的警告
RuntimeWarningj:可疑的运行时行为(runtime behavior)的警告
SyntaxWarningj:可疑的语法的警告
UserWarningj:用户代码生成的警告
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21