浅谈python for循环的巧妙运用(迭代、列表生成式)
我们可以通过for循环来迭代list、tuple、dict、set、字符串,dict比较特殊dict的存储不是连续的,所以迭代(遍历)出来的值的顺序也会发生变化。
迭代(遍历)
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
vlist=['a','b','c']
vtuple=('a','b','c')
vdict={'a': 1, 'b': 2, 'c': 3}
vset={'a','b','c'}
vstr='abc'
for x in vlist:
print('list:',x)
for x in vtuple:
print('tuple:',x)
for x in vdict:
print('dict:',x)
for x in vset:
print('set:',x)
for x in vstr:
print('str:',x)
list: a
list: b
list: c
tuple: a
tuple: b
tuple: c
dict: c
dict: a
dict: b
set: a
set: b
set: c
str: a
str: b
str: c
判断一个对象是可迭代对象可以通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable)
True
>>> isinstance([1,2,3], Iterable)
True
>>> isinstance(123, Iterable)
多值for操作
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
print(x,y)
1 1
2 4
3 9
生成下标
>>> for x, y in enumerate(['a', 'b', 'c']):
print(x, y)
0 a
1 b
2 c
生成列表
1.列出1到10的平方列表
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
L=[]
for x in range(1,11):
L.append(x*x)
print(L)[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
python提供了更简便的方法处理这个需求
>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2.添加判断条件
只取列表中的偶数
>>> [x*x for x in range(1,11) if x%2==0]
[4, 16, 36, 64, 100]
3.多个for同时判断
>>> [m+n for m in 'ABC' for n in'abc']
['Aa', 'Ab', 'Ac', 'Ba', 'Bb', 'Bc', 'Ca', 'Cb', 'Cc']
4.获取dict中的value
一般for操作只能获取dict中的key而无法获取到value,可以利用items获取到values
>>> d={'a': 'A', 'b': 'B', 'c': 'C'}
>>> [k + '=' + v for k,v in d.items()]
['c=C', 'a=A', 'b=B']
注意:由于dict是单个key-value所以在for之前不能直接使用k,v for k,v这样代表k,v是多个key而不是指key-value,所以只能进行计算,但是如果计算的话又必须保证key和value是相同的数据类型否则无法进行+操作
针对key和value是不同的数据类型可以使用普通的for循环,使用print输出
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
d={'a': 1, 'b': 2,'c': 3}
for k,v in d.items():
print(k,'=',v)
5.list中所有的字符串变成小写
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
总结
python语法太巧妙了,主要归结于它强大的库,让使用python可以少些很多底层的代码。
以上这篇浅谈python for循环的巧妙运用(迭代、列表生成式)就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21