详解Python中with语句的用法
with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导入后才可以使用),从 2.6 版本开始缺省可用(参考 What's new in Python 2.6? 中 with 语句相关部分介绍)。with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。
术语
要使用 with 语句,首先要明白上下文管理器这一概念。有了上下文管理器,with 语句才能工作。
下面是一组与上下文管理器和with 语句有关的概念。
上下文管理协议(Context Management Protocol):包含方法 __enter__() 和 __exit__(),支持
该协议的对象要实现这两个方法。
上下文管理器(Context Manager):支持上下文管理协议的对象,这种对象实现了
__enter__() 和 __exit__() 方法。上下文管理器定义执行 with 语句时要建立的运行时上下文,
负责执行 with 语句块上下文中的进入与退出操作。通常使用 with 语句调用上下文管理器,
也可以通过直接调用其方法来使用。
运行时上下文(runtime context):由上下文管理器创建,通过上下文管理器的 __enter__() 和
__exit__() 方法实现,__enter__() 方法在语句体执行之前进入运行时上下文,__exit__() 在
语句体执行完后从运行时上下文退出。with 语句支持运行时上下文这一概念。
上下文表达式(Context Expression):with 语句中跟在关键字 with 之后的表达式,该表达式
要返回一个上下文管理器对象。
语句体(with-body):with 语句包裹起来的代码块,在执行语句体之前会调用上下文管
理器的 __enter__() 方法,执行完语句体之后会执行 __exit__() 方法。
基本语法和工作原理
with 语句的语法格式如下:
清单 1. with 语句的语法格式
with context_expression [as target(s)]:
with-body
这里 context_expression 要返回一个上下文管理器对象,该对象并不赋值给 as 子句中的 target(s) ,如果指定了 as 子句的话,会将上下文管理器的 __enter__() 方法的返回值赋值给 target(s)。target(s) 可以是单个变量,或者由“()”括起来的元组(不能是仅仅由“,”分隔的变量列表,必须加“()”)。
Python 对一些内建对象进行改进,加入了对上下文管理器的支持,可以用于 with 语句中,比如可以自动关闭文件、线程锁的自动获取和释放等。假设要对一个文件进行操作,使用 with 语句可以有如下代码:
清单 2. 使用 with 语句操作文件对象
with open(r'somefileName') as somefile:
for line in somefile:
print line
# ...more code
这里使用了 with 语句,不管在处理文件过程中是否发生异常,都能保证 with 语句执行完毕后已经关闭了打开的文件句柄。如果使用传统的 try/finally 范式,则要使用类似如下代码:
清单 3. try/finally 方式操作文件对象
somefile = open(r'somefileName')
try:
for line in somefile:
print line
# ...more code
finally:
somefile.close()
比较起来,使用 with 语句可以减少编码量。已经加入对上下文管理协议支持的还有模块 threading、decimal 等。
PEP 0343 对 with 语句的实现进行了描述。with 语句的执行过程类似如下代码块:
清单 4. with 语句执行过程
context_manager = context_expression
exit = type(context_manager).__exit__
value = type(context_manager).__enter__(context_manager)
exc = True # True 表示正常执行,即便有异常也忽略;False 表示重新抛出异常,需要对异常进行处理
try:
try:
target = value # 如果使用了 as 子句
with-body # 执行 with-body
except:
# 执行过程中有异常发生
exc = False
# 如果 __exit__ 返回 True,则异常被忽略;如果返回 False,则重新抛出异常
# 由外层代码对异常进行处理
if not exit(context_manager, *sys.exc_info()):
raise
finally:
# 正常退出,或者通过 statement-body 中的 break/continue/return 语句退出
# 或者忽略异常退出
if exc:
exit(context_manager, None, None, None)
# 缺省返回 None,None 在布尔上下文中看做是 False
执行 context_expression,生成上下文管理器 context_manager
调用上下文管理器的 __enter__() 方法;如果使用了 as 子句,则将 __enter__() 方法的返回值赋值给 as 子句中的 target(s)
执行语句体 with-body
不管是否执行过程中是否发生了异常,执行上下文管理器的 __exit__() 方法,__exit__() 方法负责执行“清理”工作,如释放资源等。如果执行过程中没有出现异常,或者语句体中执行了语句 break/continue/return,则以 None 作为参数调用 __exit__(None, None, None) ;如果执行过程中出现异常,则使用 sys.exc_info 得到的异常信息为参数调用 __exit__(exc_type, exc_value, exc_traceback)
出现异常时,如果 __exit__(type, value, traceback) 返回 False,则会重新抛出异常,让with 之外的语句逻辑来处理异常,这也是通用做法;如果返回 True,则忽略异常,不再对异常进行处理
自定义上下文管理器
开发人员可以自定义支持上下文管理协议的类。自定义的上下文管理器要实现上下文管理协议所需要的 __enter__() 和 __exit__() 两个方法:
context_manager.__enter__() :进入上下文管理器的运行时上下文,在语句体执行前调用。with 语句将该方法的返回值赋值给 as 子句中的 target,如果指定了 as 子句的话
context_manager.__exit__(exc_type, exc_value, exc_traceback) :退出与上下文管理器相关的运行时上下文,返回一个布尔值表示是否对发生的异常进行处理。参数表示引起退出操作的异常,如果退出时没有发生异常,则3个参数都为None。如果发生异常,返回
True 表示不处理异常,否则会在退出该方法后重新抛出异常以由 with 语句之外的代码逻辑进行处理。如果该方法内部产生异常,则会取代由 statement-body 中语句产生的异常。要处理异常时,不要显示重新抛出异常,即不能重新抛出通过参数传递进来的异常,只需要将返回值设置为 False 就可以了。之后,上下文管理代码会检测是否 __exit__() 失败来处理异常
下面通过一个简单的示例来演示如何构建自定义的上下文管理器。注意,上下文管理器必须同时提供 __enter__() 和 __exit__() 方法的定义,缺少任何一个都会导致 AttributeError;with 语句会先检查是否提供了 __exit__() 方法,然后检查是否定义了 __enter__() 方法。
假设有一个资源 DummyResource,这种资源需要在访问前先分配,使用完后再释放掉;分配操作可以放到 __enter__() 方法中,释放操作可以放到 __exit__() 方法中。简单起见,这里只通过打印语句来表明当前的操作,并没有实际的资源分配与释放。
清单 5. 自定义支持 with 语句的对象
class DummyResource:
def __init__(self, tag):
self.tag = tag
print 'Resource [%s]' % tag
def __enter__(self):
print '[Enter %s]: Allocate resource.' % self.tag
return self # 可以返回不同的对象
def __exit__(self, exc_type, exc_value, exc_tb):
print '[Exit %s]: Free resource.' % self.tag
if exc_tb is None:
print '[Exit %s]: Exited without exception.' % self.tag
else:
print '[Exit %s]: Exited with exception raised.' % self.tag
return False # 可以省略,缺省的None也是被看做是False
DummyResource 中的 __enter__() 返回的是自身的引用,这个引用可以赋值给 as 子句中的 target 变量;返回值的类型可以根据实际需要设置为不同的类型,不必是上下文管理器对象本身。
__exit__() 方法中对变量 exc_tb 进行检测,如果不为 None,表示发生了异常,返回 False 表示需要由外部代码逻辑对异常进行处理;注意到如果没有发生异常,缺省的返回值为 None,在布尔环境中也是被看做 False,但是由于没有异常发生,__exit__() 的三个参数都为 None,上下文管理代码可以检测这种情况,做正常处理。
下面在 with 语句中访问 DummyResource :
清单 6. 使用自定义的支持 with 语句的对象
with DummyResource('Normal'):
print '[with-body] Run without exceptions.'
with DummyResource('With-Exception'):
print '[with-body] Run with exception.'
raise Exception
print '[with-body] Run with exception. Failed to finish statement-body!'
第1个 with 语句的执行结果如下:
清单 7. with 语句1执行结果
Resource [Normal]
[Enter Normal]: Allocate resource.
[with-body] Run without exceptions.
[Exit Normal]: Free resource.
[Exit Normal]: Exited without exception.
可以看到,正常执行时会先执行完语句体 with-body,然后执行 __exit__() 方法释放资源。
第2个 with 语句的执行结果如下:
清单 8. with 语句2执行结果
Resource [With-Exception]
[Enter With-Exception]: Allocate resource.
[with-body] Run with exception.
[Exit With-Exception]: Free resource.
[Exit With-Exception]: Exited with exception raised.
Traceback (most recent call last):
File "G:/demo", line 20, in <module>
raise Exception
Exception
可以看到,with-body 中发生异常时with-body 并没有执行完,但资源会保证被释放掉,同时产生的异常由 with 语句之外的代码逻辑来捕获处理。
可以自定义上下文管理器来对软件系统中的资源进行管理,比如数据库连接、共享资源的访问控制等。Python 在线文档 Writing Context Managers 提供了一个针对数据库连接进行管理的上下文管理器的简单范例。
contextlib 模块
contextlib 模块提供了3个对象:装饰器 contextmanager、函数 nested 和上下文管理器 closing。使用这些对象,可以对已有的生成器函数或者对象进行包装,加入对上下文管理协议的支持,避免了专门编写上下文管理器来支持 with 语句。
装饰器 contextmanager
contextmanager 用于对生成器函数进行装饰,生成器函数被装饰以后,返回的是一个上下文管理器,其 __enter__() 和 __exit__() 方法由 contextmanager 负责提供,而不再是之前的迭代子。被装饰的生成器函数只能产生一个值,否则会导致异常 RuntimeError;产生的值会赋值给 as 子句中的 target,如果使用了 as 子句的话。下面看一个简单的例子。
清单 9. 装饰器 contextmanager 使用示例
from contextlib import contextmanager
@contextmanager
def demo():
print '[Allocate resources]'
print 'Code before yield-statement executes in __enter__'
yield '*** contextmanager demo ***'
print 'Code after yield-statement executes in __exit__'
print '[Free resources]'
with demo() as value:
print 'Assigned Value: %s' % value
结果输出如下:
清单 10. contextmanager 使用示例执行结果
[Allocate resources]
Code before yield-statement executes in __enter__
Assigned Value: *** contextmanager demo ***
Code after yield-statement executes in __exit__
[Free resources]
可以看到,生成器函数中 yield 之前的语句在 __enter__() 方法中执行,yield 之后的语句在 __exit__() 中执行,而 yield 产生的值赋给了 as 子句中的 value 变量。
需要注意的是,contextmanager 只是省略了 __enter__() / __exit__() 的编写,但并不负责实现资源的“获取”和“清理”工作;“获取”操作需要定义在 yield 语句之前,“清理”操作需要定义 yield 语句之后,这样 with 语句在执行 __enter__() / __exit__() 方法时会执行这些语句以获取/释放资源,即生成器函数中需要实现必要的逻辑控制,包括资源访问出现错误时抛出适当的异常。
函数 nested
nested 可以将多个上下文管理器组织在一起,避免使用嵌套 with 语句。
清单 11. nested 语法
with nested(A(), B(), C()) as (X, Y, Z):
# with-body code here
类似于:
清单 12. nested 执行过程
with A() as X:
with B() as Y:
with C() as Z:
# with-body code here
需要注意的是,发生异常后,如果某个上下文管理器的 __exit__() 方法对异常处理返回 False,则更外层的上下文管理器不会监测到异常。
上下文管理器 closing
closing 的实现如下:
清单 13. 上下文管理 closing 实现
class closing(object):
# help doc here
def __init__(self, thing):
self.thing = thing
def __enter__(self):
return self.thing
def __exit__(self, *exc_info):
self.thing.close()
上下文管理器会将包装的对象赋值给 as 子句的 target 变量,同时保证打开的对象在 with-body 执行完后会关闭掉。closing 上下文管理器包装起来的对象必须提供 close() 方法的定义,否则执行时会报 AttributeError 错误。
清单 14. 自定义支持 closing 的对象
class ClosingDemo(object):
def __init__(self):
self.acquire()
def acquire(self):
print 'Acquire resources.'
def free(self):
print 'Clean up any resources acquired.'
def close(self):
self.free()
with closing(ClosingDemo()):
print 'Using resources'
结果输出如下:
清单 15. 自定义 closing 对象的输出结果
Acquire resources.
Using resources
Clean up any resources acquired.
closing 适用于提供了 close() 实现的对象,比如网络连接、数据库连接等,也可以在自定义类时通过接口 close() 来执行所需要的资源“清理”工作。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16