区块链的层级结构
1、数据层/ Data Layer
数据层主要描述区块链的物理形式,是区块链上从创世区块起始的链式结构,包含了区块链的区块数据、链式结构以及区块上的随机数、时间戳、公私钥数据等,是整个区块链技术中最底层的数据结构。
2、网络层/ Network Layer
网络层主要通过 P2P 技术实现分布式网络的机制,网络层包括 P2P 组网机制、数据传播机制和数据验证机制,因此区块链本质上是一个 P2P 的网络,具备自动组网的机制,节点之间通过维护一个共同的区块链结构来保持通信。
3、共识层/ Consensus Layer
共识层主要包含共识算法以及共识机制,能让高度分散的节点在去中心化的区块链网络中高效地针对区块数据的有效性达成共识,是区块链的核心技术之一,也是区块链社群的治理机制。目前至少有数十种共识机制算法,包含工作量证明、权益证明、权益授权证明、燃烧证明、重要性证明等。
数据层、网络层、共识层是构建区块链技术的必要元素,缺少任何一层都不能称之为真正意义上的区块链技术。
4、激励层/ Actuator Layer
激励层主要包括经济激励的发行制度和分配制度,其功能是提供一定的激励措施,鼓励节点参与区块链中安全验证工作,并将经济因素纳入到区块链技术体系中,激励遵守规则参与记账的节点,并惩罚不遵守规则的节点。
5、合约层/ Contract Layer
合约层主要包括各种脚本、代码、算法机制及智能合约,是区块链可编程的基础。将代码嵌入区块链或是令牌中,实现可以自定义的智能合约,并在达到某个确定的约束条件的情况下,无需经由第三方就能够自动执行,是区块链去信任的基础。
6、应用层/ Application Layer
区块链的应用层封装了各种应用场景和案例,类似于电脑操作系统上的应用程序、互联网浏览器上的门户网站、搜寻引擎、电子商城或是手机端上的 APP,将区块链技术应用部署在如以太坊、EOS、QTUM 上并在现实生活场景中落地。未来的可编程金融和可编程社会也将会是搭建在应用层上。
激励层、合约层和应用层不是每个区块链应用的必要因素,一些区块链应用并不完整包含此三层结构。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21