大数据如何从信息爆炸中获取价值
随着企业和政府机构试图在日益激烈的竞争中改进服务并获得业务优势,大数据的急剧增长给他们带来了严峻的挑战。
无论您身处哪个行业,围绕大数据及管理这些信息的挑战都无处不在。
·金融服务行业必须满足客户对数字银行服务的期望,并处理风险和监管需求等问题;
·在医疗和生命科学领域,患者隐私及药物开发问题使合规成为了关键的投资动因;
·了解客户需求以提高服务和参与模式是旅游和交通行业必不可少的;
·在政府和公共事业领域,政府正在提高其智能及安全能力,以期更好地保护公众;
·实时的数据可视化、汇总和诠释对于能源行业至关重要。
毫无准备的企业可能会在应对现有原始信息的数量、种类和速度时手足无措。如果企业缺乏管理并处理多来源海量信息的能力,将会导致涉及整个企业层面的各类问题:
·具有更先进的信息系统的竞争对手将能很好地利用数据并争夺客户;
·尽管有更大量和更多来源,实现数据价值将越来越困难;
·浪费大量时间过滤海量不相关的数据,而这些数据不能支持决策或推动其执行;
·缺乏灵活性、分离的信息基础设施成本将逐步增加。
政府和企业迫切需要从无关的数据中获取洞察,并有能力对其有效利用。那些能从战略上迅速响应,并从海量信息中提取真正价值的企业将能获得关键的市场领先地位。
发挥信息的力量
根据Coleman Parkes Research的研究表明,亚太和日本地区62%的私有企业认为有效的信息优化战略能帮助其获得竞争优势。
但是仅有不到一半的企业采用了合适的解决方案并从大数据中获得洞察,而目前仅有15%的企业将非结构化数据纳入了其企业洞察、流程和战略。
企业的终极目标应是充分利用100%的信息来推动更快、更明智的业务决策。企业应能衡量信息战略在新增收入、节约成本以及加速上市等方面所带来的价值。
要想在以信息为驱动力的新时代获得成功,企业需要信息优化战略以及可理解抽象概念的解决方案。
企业的目标是通过涵盖所有数据形式的信息管理和分析系统实现互联性智能。这意味着他们必须:
·建立一个敏捷的智能环境,并有合适的基础设施来捕获和存储海量信息,进行实时分析并迅速适应不断变化的优先事项;
·对企业生态系统中的信息和智能战略进行整合,以获得对业务数据的完整视图;
·通过将洞察和理念转化为行动而实现信息资产的全部价值。
提升客户体验
实现更好的客户体验是所有信息优化战略的主要目标。
改进企业搜索和分析信息的方式,以更好地了解客户行为和需求,从而支持快速、明智的业务决策。这将有助于实现更好的客户体验和更高的忠诚度。
信息洞察应整合所有客户信息,无论客户如何与企业进行互动,包括通过社交媒体、微博、移动应用,以及通过电话等其它方式。信息必须在不同的业务范围内进行收集,同时还要解决潜在的隐私和安全问题。
先进的信息技术能够帮助企业增强其识别客户喜好、问题和趋势的能力。而这些情报可被用来更好地与客户进行互动,同时提供超越竞争对手的洞察。
这些新情报可在应用开发以及将应用迁移至云的过程中发挥作用,而云能让客户轻松、快速地获得新服务。
优化业务绩效
不仅是企业需要应对海量结构化和非结构化数据,数据也分布于多个可能互不相关的业务范围,也存在于许多不同的应用中。现代数据中心的另一个关键能力是能够处理大量的无关信息,从而获得能提高业务绩效的洞察。
通过整合、迁移并汇总数据存储,企业可以改进信息访问,并降低IT运营成本。这能带来简单、灵活、迅速、低成本高收益的信息基础设施,而此类基础设施同时还具有可扩展性、模块化特性,及可靠性。
用智能信息基础设施替换复杂的孤立数据库,企业能够在需要时捕捉、存储并提供信息,无论采用哪种应用、规模有多大。
充分利用100%的相关职能和运营数据能够帮助客户提高运营业绩和经营利润,并对信息生命周期管理进行自动化处理。
信息优化的目标为构建一个服务于整个企业,从数据安全及合规,到分析和敏捷性的统一基础设施。而由此带来的快速、轻松分析信息的能力能够帮助企业获得更可靠的视图,从而做出准确、有效的决策。
管理安全和风险
将能够端到端管理100%大数据作为新目标,企业应研究更好的监管和安全措施来应对与日俱增的风险和复杂性。
这些问题包括:不能充分利用目前所有可用数据进行及时、正确的决策所带来的财务和法律风险,以及获取数据并保证其是最新、最正确的。
智能信息生态系统可管理安全环境中的数据,从而管理日常业务并降低风险。它还能利用洞察来引导企业投资和定价,并充分利用新的业务机会。
将数据转化为资产
不能周密部署并迅速采取行动的企业有可能面临被剧增的大数据淹没的风险。
另一方面,那些能够实施全面的企业级信息优化战略的企业所获得的回报将是非常巨大的。
这一战略有助于缩小潜在的和最终实现的业务成果之间的差距。总之,它可以分为三大要素:
·能捕获、存储、复制并扩展数据的信息基础设施;
·管理、保护、治理并充分利用数据的信息管理;
·搜索、分析、理解数据并对其采取行动的信息洞察工具。
能够从自身数据资产中获得深入洞察和价值的企业将开始收获其实质性的信息回报。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13